Journal of Statistical Physics

, Volume 65, Issue 3–4, pp 715–723

Power law growth for the resistance in the Fibonacci model

  • B. Iochum
  • D. Testard
Articles

Abstract

Many one-dimensional quasiperiodic systems based on the Fibonacci rule, such as the tight-binding HamiltonianHψ(n)=ψ(n+1)+ψ(n−1)+λv(n)ψ(n),nεℤ,ψεl2(ℤ),λεℝ, wherev(n)=[(n+1)α]−[],[x] denoting the integer part ofx and α the golden mean\((\sqrt 5 --1)/2\), give rise to the same recursion relation for the transfer matrices. It is proved that the wave functions and the norm of transfer matrices are polynomially bounded (critical regime) if and only if the energy is in the spectrum of the Hamiltonian. This solves a conjecture of Kohmoto and Sutherland on the power-law growth of the resistance in a one-dimensional quasicrystal.

Key words

Periodic Hamiltonian Fibonacci chain transfer matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Avishai and D. Berend, Transmission through a Fibonacci lattice, Preprint (1990).Google Scholar
  2. 2.
    J. M. Berezanskii, Expansions in eigenfunctions of selfadjoint operators,Translations Am. Math. Soc. 17 (1968).Google Scholar
  3. 3.
    J. Bellissard, B. Iochum, E. Scoppola, and D. Testard, Spectral theory of one dimensional quasi-crystal,Commun. Math. Phys. 125:527–543 (1989).Google Scholar
  4. 4.
    J. Bellissard, B. Iochum, and D. Testard, Continuity properties of the electronic spectrum of 1D quasicrystals,Commun. Math. Phys., to appear.Google Scholar
  5. 5.
    M. Casdagli, Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation,Commun. Math. Phys. 107:295–318 (1986).Google Scholar
  6. 6.
    G. Gumbs and M. K. Ali, Scaling and eigenstates for a class of one dimensional quasiperiodic lattices,J. Phys. A 21:L517–L521 (1988).Google Scholar
  7. 7.
    G. Gumbs and M. K. Ali, Dynamical maps, Cantor spectra, and localization for Fibonacci and related quasiperiodic lattices,Phys. Rev. Lett. 60:1081–1084 (1988).Google Scholar
  8. 8.
    M. Holtzer, Three classes of one-dimensional, two-tile Penrose tilings and the Fibonacci Kronig-Penney model as a generic case,Phys. Rev. B 38:1709–1720 (1988).Google Scholar
  9. 9.
    M. Holtzer, Nonlinear dynamics of localization in a class of one-dimensional quasicrystals,Phys. Rev. B 38:5756–5759 (1988).Google Scholar
  10. 10.
    C. Janot and J. M. Dubois,Quasicrystalline Materials (World Scientific, Singapore, 1988).Google Scholar
  11. 11.
    M. Kohmoto, Metal-insulator transition and scaling for incommensurate system,Phys. Rev. Lett. 51:1198–1201 (1983).Google Scholar
  12. 12.
    M. Kohmoto and J. R. Banavar, Quasi periodic lattice: Electronic properties, phonon properties and diffusion,Phys. B 34:563–566 (1986).Google Scholar
  13. 13.
    P. A. Kalugin, A. Y. Kitaev, and L. S. Levitov, Electron spectrum of a one-dimensional quasicrystal,Sov. Phys. JETP 64:410–415 (1986).Google Scholar
  14. 14.
    M. Kohmoto, L. P. Kadanoff, and C. Tang, Localization problem in one dimension: Mapping and-escape,Phys. Rev. Lett. 50:1870–1873 (1983).Google Scholar
  15. 15.
    J. Kollar and A. Sütő, The Kronig-Penney model in a Fibonacci lattice,Phys. Lett. A 117:203–209 (1986).Google Scholar
  16. 16.
    M. Kohmoto, B. Sutherland, and K. Iguchi, Localization in optics: Quasi-periodic media,Phys. Rev. Lett. 58:2436–2438 (1987).Google Scholar
  17. 17.
    M. Kohmoto, B. Sutherland, and C. Tang, Critical wave functions and a Cantor-set spectrum of a one dimensional quasicrystal model,Phys. Rev. B 35:1020–1033 (1987).Google Scholar
  18. 18.
    L. S. Levitov, Renormalization group for a quasi-periodic Schrödinger operator,J. Phys. 50:707–716 (1989).Google Scholar
  19. 19.
    A. H. Mac Donald, Fibonacci superlattices, inInterfaces, Quantum Wells and Superlattices, R. Leavers and R. Taylor, eds. (Plenum Press, New York, 1988).Google Scholar
  20. 20.
    A. H. MacDonald and G. C. Aers, Continuum-model acoustic and electronic properties for a Fibonacci superlattice,Phys. Rev. B 36:9142–9145 (1987).Google Scholar
  21. 21.
    A. Mookerjee and V. A. Singh, Nature of the eigenstates on a Fibonacci chain,Phys. Rev. B 34:7433–7435 (1986).Google Scholar
  22. 22.
    H.-R. Ma and C.-H. Tsai, Interface polarisation modes in semiconductor quasiperiodic lattices,Phys. Rev. B 35:9295–9297 (1987).Google Scholar
  23. 23.
    F. Nori and J. P. Rodriguez, Acoustic and electric properties of one-dimensional quasicrystals,Phys. Rev. B 34:2207–2211 (1986).Google Scholar
  24. 24.
    T. Odagami and H. Aoyama, Self-similarities in one dimensional periodic and quasiperiodic systems,Phys. Rev. B 39:475–487 (1989).Google Scholar
  25. 25.
    T. Odagami and H. Aoyama, Hyperinflation in periodic and quasiperiodic chains,Phys. Rev. Lett. 61:775–778 (1988).Google Scholar
  26. 26.
    S. Ostlund and S.-H. Kim, Renormalization of quasi-periodic mappings,Physica Scripta 9:193–198 (1985).Google Scholar
  27. 27.
    S. Ostlund and R. Prandit, Renormalization-group analysis of the discrete quasiperiodic Schrödinger equation,Phys. Rev. B 29:1394–1414 (1984).Google Scholar
  28. 28.
    S. Ostlund, R. Prandit, R. Rand, H. J. Schnellnhuber, and E. D. Siggia, One dimensional Schrödinger equation with an almost periodic potential,Phys. Rev. Lett. 50:1873–1877 (1983).Google Scholar
  29. 29.
    A. Sütő, The spectrum of a quasi-periodic Schrödinger operator,Commun. Math. Phys. 111:409–415 (1987).Google Scholar
  30. 30.
    A. Sütő, Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian,J. Stat. Phys. 56:525–531 (1989).Google Scholar
  31. 31.
    D. S. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry,Phys. Rev. Lett. 53:1951–1953 (1984).Google Scholar
  32. 32.
    B. Sutherland and M. Kohmoto, Resistance of a one dimensional quasicrystal, power law growth,Phys. Rev. B 36:5877–5886 (1987).Google Scholar
  33. 33.
    C. Sire and M. Mosseri, Spectrum of 1D quasicrystals near the periodic chain,J. Phys. (Paris)50:3447–3461 (1989).Google Scholar
  34. 34.
    P. J. Steinhardt and S. Ostlund,The Physics of Quasicrystals (World Scientific, Singapore, 1987).Google Scholar
  35. 35.
    J. A. Vergés, L. Brey, E. Lewis, and C. Tejedor, Localization m a one-dimensional quasiperiodic Hamiltonian with off-diagonal disorder,Phys. Rev. B 35:5270–5272 (1987).Google Scholar
  36. 36.
    F. Wijnands, Energy spectra for one-dimensional quasi-periodic potentials: Bandwith, scaling, mapping and relation with local isomorphism,J. Phys. A 22:3267–3282 (1989).Google Scholar
  37. 37.
    D. Würtz, T. Schneider, and A. Politi, Renormalization-group study of Fibonacci chains,Phys. Lett. A 129:88–92 (1988).Google Scholar
  38. 38.
    J. Q. You and Q. B. Yang, Dynamical maps and Cantor like spectra for a class of one-dimensional quasi-periodic lattices,J. Phys.: Condensed Matter 2:2093–2098 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • B. Iochum
    • 1
    • 2
  • D. Testard
    • 1
    • 3
  1. 1.Centre de Physique Théorique (Unité Propre de Recherche 7061)CNRS Luminy, Case 907Marseille Cedex 9France
  2. 2.Université de ProvenceMarseilleFrance
  3. 3.Université d'Aix-Marseille IILuminyFrance

Personalised recommendations