Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular modeling as a tool to discriminate between enantiomers resolved by derivatized cyclodextrins in gas chromatography

  • 48 Accesses

  • 6 Citations

Abstract

The elution order of a series of enantiomers, determined by gas chromatography using permethylated and trifluoroacetylatedβ- andγ-cyclodextrins as stationary phases, was tentatively correlated with the lowest energies of the host-guest complex models resulting by including the enantiomers into the cyclodextrin cavity by means of the molecular mechanics method using standard software packagesSybyl andSpartan. The modeling data of cyclic isomers such as proline derivatives andγ-lactones correlate with the gas chromatographic data. Those of open isomers such as other aliphaticd,l-amino acids and alcohols, give contradictory results.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Ahuja, ed:Chiral Separations by Liquid Chromatography, ACS Symposium Series 471. Washington DC: American Chemical Society (1991)

  2. 2.

    W.A. König:Gas Chromatographic Enantiomer Separation with Modified Cyclodextrins, Hüthig Buch Verlag, Heidelberg (1992).

  3. 3.

    V. Schurig and H.P. Nowomy:Angew. Chem. Int. Ed. Engl. 29, 939 (1990).

  4. 4.

    C. Bicchi, G. Artuffo, A. D'Amato, and V. Manzin:J. High Resolution Chromatogr. 16, 209 (1993).

  5. 5.

    B. Maas, A. Dietrich, A. Mosandl:J. High Resolution Chromatogr. 17, 109 (1994) and references therein.

  6. 6.

    H. Frank, G.J. Nicholson, and E. Bayer:Angew. Chem. Int. Ed. Engl. 17, 363 (1978).

  7. 7.

    W.H. Pirkle and T.C. Pochapsky:J. Am. Chem. Soc. 109, 5975 (1987).

  8. 8.

    R. Corradini, R. Marchelli, A. Dossena, and A. Spisni:J. Org. Chem. 54, 684 (1989).

  9. 9.

    A. Berthod, W. Li, and D.W. Armstrong:Anal. Chem. 64, 873 (1992).

  10. 10.

    K.B. Lipkowitz, K.M. Green, J. Yang, G. Pearl, and M.A. Peterson:Chirality 5, 51 (1993).

  11. 11.

    T. Lü, D. Zhang, and S. Dong:J. Chem. Soc. Faraday Trans. 2, 85, 1439 (1989).

  12. 12.

    C. Jaime, J. Redondo, F. Sanchez-Ferrando, and A. Virgili:J. Org. Chem. 55, 4772 (1990).

  13. 13.

    Cambridge Structural Data Base System, Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road Cambridge CB 2 IEW, U.K.

  14. 14.

    I. Ciucano and F. Kerek:Carbohydr. Res. 131, 209 (1984).

  15. 15.

    J.R. Johnson, N. Shankland, and I.H. Sadler:Tetrahedron 41, 3147 (1985).

  16. 16.

    Spartan version 4.1user guide 1995.

  17. 17.

    Sybyl version 6.1theory manual 1995.

  18. 18.

    Biosym version 2.9user guide 1993.

  19. 19.

    M. Clark, R.D. CramerIII, and N. Van Opdenbosch:J. Comput. Chem. 10, 982 (1989).

Download references

Author information

Correspondence to G. Palla.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cozzini, P., Domiano, P., Musini, P.C. et al. Molecular modeling as a tool to discriminate between enantiomers resolved by derivatized cyclodextrins in gas chromatography. J Incl Phenom Macrocycl Chem 26, 295–302 (1996). https://doi.org/10.1007/BF01053546

Download citation

Key words

  • Modified cyclodextrins
  • enantioselective separation
  • schiral recognition
  • molecular modeling