Instability of solitary waves for generalized Boussinesq equations
Article
- 239 Downloads
- 46 Citations
Abstract
An equation of Boussinesq-type of the formu tt -u xx +(f(u)+uxx)xx=0 is considered. It is shown that a traveling wave may be stable or unstable, depending on the range of the wave's speed of propagation and on the nonlinearity. Sharp conditions to that effect are given.
Key words
Boussinesq equation solitary wave stability theoryPreview
Unable to display preview. Download preview PDF.
References
- 1.Albert, J. (1986). Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation.J. Diff. Eq. 63, 117–134.Google Scholar
- 2.Berestycki, H., and Lions, P. (1983). Nonlinear scalar field equation I.Arch. Rat. Mech. Anal. 82, 313–346.Google Scholar
- 3.Bona, J., and Sachs, R. (1988). Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation.Comm. Math. Phys. 118, 15–29.Google Scholar
- 4.Bona, J., Souganidis, P., and Strauss, W. (1987). Stability and instability of solitary waves of Korteweg-de Vries type.Proc. Roy. Soc. London Ser. A 411, 395–412.Google Scholar
- 5.Bona, J., and Smith, R. (1976). A model for the two-way propagation of water waves in a channel.Math. Proc. Camb. Phil. Soc. 79, 167–182.Google Scholar
- 6.Boussinesq, J. (1872). Theorie des ondes et de remous qui se propagent...J. Math. Pure Appl. Sect. 2 17, 55–108.Google Scholar
- 7.Deift, P., Tomei, C., and Trubowitz, E. (1982). Inverse scattering and the Boussinesqequation.Comm. Pure Appl. Math. 35, 567–628.Google Scholar
- 8.Grillakis, M., Shatah, J., and Strauss, W. (1987, 1990). Stability theory of solitary waves in the presence of symmetry I and II.J. Fund. Anal. 74, 160–197; 94, 308–348.Google Scholar
- 9.Kalantarov, V., and Ladyzhenskaya, O. (1978). The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types.J. Sov. Math. 10, 53–70.Google Scholar
- 10.Kato, T. (1974). Quasilinear equations of evolution, with applications to partial differential equations,Lecture Notes in Mathematics, Vol. 448, Springer, Berlin, Heidelberg, New York, pp. 25–70.Google Scholar
- 11.Pazy, A. (1983).Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York.Google Scholar
- 12.Pego, R., and Weinstein, M. A class of eigenvalue problems with application to instability of solitary waves, Preprint.Google Scholar
- 13.Reed, M., and Simon, B. (1978).Methods of Modern Mathematical Physics, Vols. I, II, III, IV, Academic Press, New York.Google Scholar
- 14.Sachs, R., oral communication.Google Scholar
- 15.Shatah, J., and Strauss, W. (1985). Instability of nonlinear bound states.Comm. Math. Phys. 100, 173–190.Google Scholar
- 16.Souganidis, P., and Strauss, W. (1990). Instability of a class of dispersive solitary waves.Proc. Roy. Soc. Edinburgh 114A, 195–212.Google Scholar
- 17.Strauss, W. (1989).Nonlinear Wave Equations, A.M.S.Google Scholar
- 18.Weinstein, M. (1987). Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation.Comm. Part. Diff. Eq. 12, 1133–1177.Google Scholar
- 19.Weinstein, M. (1986). Lyapunov stability of ground states of nonlinear dispersive evolution equations.Comm. Pure Appl. Math. 39, 51–68.Google Scholar
- 20.Falk, F., Laedke, E. W., and Spatschek, K. H. (1987). Stability of solitary wave pulses in shape-memory alloys.Phys. Rev. B36, 3031–3041.Google Scholar
Copyright information
© Plenum Publishing Corporation 1993