Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transport of phase space volume near isolated invariant sets

  • 37 Accesses

  • 2 Citations

Abstract

A measure preserving homeomorphismf determines a discrete dynamical system. Measurable sets in phase space are moved or transported byf. It is shown that the asymptotic rate of escape of phase space volume from neighborhoods which isolate the same invariant set is unique.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. Bowen and D. Ruelle. The ergodic theory of axiom A flows.Invent. Math,29, 181–202 (1975).

  2. 2.

    R. Easton, J. Meiss, and S. Carver. Exit times and transport for symplectic twist maps.Chaos 3(2) 153–165 (1993).

  3. 3.

    R. W. Easton. Transport through chaos.Nonlinearity 4, 583–590 (1991).

  4. 4.

    C. Grebogi, E. Ott, and J. A. Yorke. Unstable periodic orbits and the dimensions of multifractal chaotic attractors.Phys. Rev. A 37, 1711–1724 (1988).

  5. 5.

    P. Kadanoff and C. Tang. Escape from strange repellers.Proc. Natl. Acad. Sci. USA 81 (1984).

  6. 6.

    R. S. MacKay, J. D. Meiss, and I. C. Perciva. Stochasticity and transport in Hamiltonian systems.Phys. Rev. Lett. 52, 697–700 (1984).

  7. 7.

    R. S. MacKay, J. D. Meiss, and I. C. Percival. Resonances in area preserving maps.Physica D 27, 1–20 (1987).

  8. 8.

    J. D. Meiss. Symplectic maps, variational principles, and transport.Rev. Modern Phys. 64(3) (1992).

  9. 9.

    Rom-Kedar. Transport rates of a class of two-dimensional maps and flows.Physica D 43 (1990).

  10. 10.

    R. Skodje and M. Davis. Statistical rate theory for transient species: Exact decay rates from periodic orbits.J. Chem. Phys. Lett. 175 (1990).

  11. 11.

    S. Wiggins. On the geometry of transport in phase space I.Physica D 44, 471–501 (1990).

  12. 12.

    S. Wiggins.Chaotic Transport in Dynamical Systems, Springer-Verlag, New York, 1992.

  13. 13.

    L. Young. Some large deviation results for dynamical systems.Trans. A.M.S. 318(2) (1990).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Easton, R.W. Transport of phase space volume near isolated invariant sets. J Dyn Diff Equat 5, 529–536 (1993). https://doi.org/10.1007/BF01053534

Download citation

Key words

  • Transport
  • phase space volume
  • invariant sets