Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Agonistic behavior correlated with hydrocarbon phenotypes in dampwood termites,Zootermopsis (Isoptera: Termopsidae)

  • 156 Accesses

  • 69 Citations


The dampwood termite genus ZootermopsisEmerson contains three recognized species with four distinct and consistent hydrocarbon phenotypes. Agonistic behaviors among nonreproductive insects from colonies of the same and different hydrocarbon phenotypes were observed in the laboratory. Various combinations of soldier versus nymphs, pseudergate versus pseudergate, and soldier versus soldier encounters were used in experimental trials. Soldiers or pseudergates seldom attack individuals of the same hydrocarbon phenotype. Z. angusticollis(Hagen) (phenotype II) is typically aggressive toward phenotype III of Z. nevadensis(Hagen) but not always aggressive against phenotype I of Z. nevadensis.The variation in response is dependent on which castes are placed in the bioassay arena: soldier versus soldier bouts result in consistent aggression, while pseudergate versus pseudergate or soldier versus nymphs contacts do not. Both pseudergates and soldiers of Z. laticeps(Banks) (phenotype IV) respond agonistically toward the other three phenotypes: Z. angusticollis (II) and Z. nevadensis(I and III). Although hydrocarbon phenotypes I and III, both Z. nevadensis,are morphologically indistinguishable, agonistic behavioral responses between phenotype I and phenotype III are not equivalent to I versus I or III versus III behavioral responses. The I versus III engagements, regardless of the castes involved, display a greater proportion of avoidance and aggressive responses than I or III intraphenotype encounters. We interpret the lack of avoidance or aggressive behavior within each of the two phenotypes of Z. nevadensisand the significant avoidance and aggressive behavior between phenotypes as definite evidence of discrimination between disparate hydrocarbon phenotypes. These agonistic bioassays along with data on distinct hydrocarbon patterns and geographic distributions serve as the basis for creating two subspecies of Z. nevadensis: Z. n. nevadensis(Hagen) and Z. n. nuttingiHaverty and Thorne, ssp. nov.

This is a preview of subscription content, log in to check access.


  1. Adams, E. S., and Levings, S. C. (1987). Territory size and population limits in mangrove termites.J. Anim. Ecol. 56: 1609–1081.

  2. Andrews, E. A. (1911). Observations on termites in Jamaica.J. Anim. Behav. 1: 193–228.

  3. Blomquist, G. J., and Dillwith, J. W. (1985). Cuticular Lipids. In Kerkut, G. A., and Gilbert, L. I. (eds.),Comprehensive Insect Physiology, Biochemistry and Pharmacology, Pergamon Press, Oxford, Vol. 3, pp. 117–154.

  4. Carlson, D. A., and Bolten, A. B. (1984). Identification of Africanized and European honey bees, using extracted hydrocarbons.Bull. Entomol. Soc. Am. 30: 32–35.

  5. Clément, J. L. (1978). L'agression inter et intraspecific des especes française du genreReticulitermes (Isoptere).C.R. Acad. Sci. Paris 286: 351–354.

  6. Clément, J. L. (1982). Signaux de contact responsables de l'agression inter specifique des Termites du genreReticulitermes (Isoptera).C.R. Acad. Sci. Paris 294: 635–638.

  7. Clément, J. L. (1986). Open and closed societies inReticulitermes termites (Isoptera, Rhinotermitidae): Geographic and seasonal variations.Sociobiology 11: 311–323.

  8. Dropkin, V. H. (1946). The use of mixed colonies of termites in the study of host-symbiont relations.J. Parasit. 32: 247–251.

  9. Dudley, P. H., and Beaumont, J. (1889). Observations on the termites, or white-ants of the Isthmus of Panama.Trans. N.Y. Acad. Sci. 8: 85–114.

  10. Emerson, A. E. (1933). A revision of the genera of fossil and recent Termopsinae (Isoptera).Univ. Calif. Publ. Entomol. 6: 165–196.

  11. Fleiss, J. L. (1981).Statistical Methods for Rates and Proportions, 2nd ed., John Wiley and Sons, New York.

  12. Grassi, B., and Sandias, A. (1896–1897). The constitution and development of the society of termites: Observations on their habits: With appendices on the parasitic protozoa of Termitidae, and on the Embiidae.Q. J. Microsc. Sci. 39: 245–322;40: 1–82.

  13. Haverty, M. I., Page, M., Nelson, L. J. (1988a). Geographic distribution of hydrocarbon phenotypes of the North American dampwood termites.,Zootermopsis. Environ. Entomol. (in preparation).

  14. Haverty, M. I., Page, M., Nelson, L. J., and Blomquist, G. J. (1988b). Cuticular hydrocarbons of the dampwood termites,Zootermopsis: Intra- and intercolony variation and potential as taxonomic characters.J. Chem. Ecol. 14: 1035–1057.

  15. Howard, R. W., and Blomquist, G. J. (1982). Chemical ecology and biochemistry of insect hydro-carbons.Annu. Rev. Entomol. 27: 149–172.

  16. Howard, R. W., McDaniel, C. A., Nelson, R. N., Blomquist, G. J., Gelbaum, L. T., and Zalkow, L. H. (1982). Cuticular hydrocarbons ofReticulitermes virginicus (Banks) and their role as potential species- and caste-recognition cues.J. Chem. Ecol. 8: 1227–1239.

  17. Howick, C. D., and Creffield, J. W. (1980). Intraspecific antagonism inCoptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae).Bull. Entomol. Res. 70: 17–23.

  18. Jones, S. C. (1987).Foraging Parry and Territory Size of the Desert Subterranean Termite Heterotermes aureus(Snyder) in a Sonoran Desert Grassland, Ph.D. thesis, University of Arizona, Tucson.

  19. Levings, S. C., and Adams, E. S. (1984). Intra- and interspecific territoriality inNasutitermes (Isoptera: Termitidae) in a Panamanian mangrove forest.J. Anim. Ecol. 53: 705–714.

  20. Miller, E. M. (1969). Caste differentiation in the lower termites. In Krishna, K., and Weesner, F. M. (eds.),Biology of Termites, Academic Press, New York and London, Vol. I, pp. 283–310.

  21. Nel, J. J. C. (1968). Aggressive behaviour of the harvester termitesHodotermes mossambicus (Hagen) andTrinervitermes trinervoides (Sjöstedt).Insectes Soc. 15: 145–156.

  22. Obin, M. S. (1986). Nestmate recognition cues in laboratory and field colonies ofSolenopsis invicta Buren (Hymenoptera: Formicidae). Effect of environment and role of cuticular hydrocarbons.J. Chem. Ecol. 12: 1965–1975.

  23. Pickens, A. L. (1934). The biology and economic significance of the western subterranean termite,Reticulitermes hesperus. In Kofoid, C. A. (ed.),Termites and Termite Control, University of California Press, Berkeley, pp. 157–183.

  24. Springhetti, A., and Amorelli, M. (1982). Competitive behavior between two species of Isoptera:Kalotermes flavicollis andReticulitermes lucifugus.Sociobiology 7: 155–164.

  25. Sumner, E. C. (1933). The species of the termite genusZootermopsis Emerson (=Termopsis Hagen).Univ. Calif. Publ. Entomol. 6: 197–230.

  26. Thorne, B. L. (1982). Termite-termite interactions: Workers as an agonistic caste.Psyche 89: 133–150.

  27. Thorne, B. L., and Haverty, M. I. (1989). Accurate identificationof Zootermopsis species (Isoptera: Termopsidae) based on a mandiblar character of non-soldier castes.Ann. Entomol. Soc. Am. 82: 262–266.

  28. Traniello, J. F. A. and Beshers, S. (1985). Species-specific alarm/recruitment responses in a Neotropical termite.Naturwissenschaften 72: 491–492.

  29. Vander Meer, R. K., Lofgren, C. S., and Alvarez, F. M. (1986). Hybridization in fire ants: Biochemical and behavioral evidence.Fla. Entomol. 68: 501–506.

  30. Weesner, F. M. (1970). Termites of the Nearctic Region. In Krishna, K., and Weesner, F. M. (eds.),Biology of Termites, Academic Press, New York and London, Vol. II, pp. 477–525.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haverty, M.I., Thorne, B.L. Agonistic behavior correlated with hydrocarbon phenotypes in dampwood termites,Zootermopsis (Isoptera: Termopsidae). J Insect Behav 2, 523–543 (1989). https://doi.org/10.1007/BF01053352

Download citation

Key words

  • chemotaxonomy
  • aggression
  • kin recognition
  • kin discrimination
  • Zootermopsis
  • Isoptera
  • species interactions
  • cuticular hydrocarbons