Glycoconjugate Journal

, Volume 13, Issue 6, pp 927–931 | Cite as

A1H NMR investigation of the hydrolysis of a synthetic substrate by KDN-sialidase fromCrassostrea virginica

  • Jennifer C. Wilson
  • David C. M. Kong
  • Yu-Teh Li
  • Mark Von Itzstein
Short Communication


The mechanism of hydrolysis of 4-methylumbelliferyl 3-deoxy-d-glycero-α-d-galacto-2-nonulopyranosidonic acid (KDNα2MeUmb,4) by KDN-sialidase isolated from the hepatopancreas of the oysterCrassostrea virginica has been monitored by1H NMR spectroscopy. The results of these experiments reveal that KDN-sialidase catalyses the hydrolysis of the synthetic substrate KDNα2MeUmb, with initial release of α-d-KDN. This is consistent with an overall mechanism for the hydrolysis which proceeds with retention of anomeric configuration. These results agree with earlier NMR studies of otherN-acetylneuraminic acid-recognising sialidases from both viral and bacterial sources.


KDN-sialidase NMR spectroscopy sialidases KDN 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nadano D, Iwasaki M, Endo S, Kitajima K, Inoue S, Inoue Y (1986)J Biol Chem 261: 11550–57.PubMedGoogle Scholar
  2. 2.
    Iwasaki M, Inoue S, Nadano D, Inoue Y (1987)Biochemistry 26: 1452–57.Google Scholar
  3. 3.
    Inoue S, Kanamori A, Kitajima K, Inoue Y (1988)Biochem Biophys Res Commun 153: 172–76.PubMedGoogle Scholar
  4. 4.
    Song Y, Kitajima K, Inoue S, Inoue Y (1991)J Biol Chem 266: 21929–35.PubMedGoogle Scholar
  5. 5.
    Strecker G, Wieruszeski J-M, Michalski J-C, Alonso C, Boilly B, Montreuil J (1992)FEBS Lett 298: 39–48.PubMedGoogle Scholar
  6. 6.
    Knirel YA, Kocharova NA, Shashkov AS, Kochetkov NK, Mamontova WA, Solov'eva TF (1989)Carbohydr Res 188: 145–55.PubMedGoogle Scholar
  7. 7.
    Kimura M, Hama Y, Sumi T, Asakawa M, Rao BNN, Horne AP, Li S-C, Li Y-T, Nakagawa H (1994)J Biol Chem 269: 32138–43.PubMedGoogle Scholar
  8. 8.
    Iwasaki M, Inoue S, Troy FA (1990)J Biol Chem 265: 2596–620.PubMedGoogle Scholar
  9. 9.
    Kitazume S, Kitajima K, Inoue S, Inoue Y (1992)Anal Biochem 202: 25–34.PubMedGoogle Scholar
  10. 10.
    Li Y-T, Yuziuk JA, Li S-C, Nematalla A, Hasegawa A, Kimura M, Nakagawa H (1994)Arch Biochem Biophys 310: 243–46.PubMedGoogle Scholar
  11. 11.
    Roggentin P, Schauer R, Hoyer LL, Vimr ER (1993)Mol Microbiol 9: 915–21.PubMedGoogle Scholar
  12. 12.
    Schauer R (1985)Trends Biochem Sci 10: 357–60.Google Scholar
  13. 13.
    von Itzstein M, Wu W-Y, Kok G, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR (1993)Nature 363: 418–23.PubMedGoogle Scholar
  14. 14.
    Holzer CT, von Itzstein M, Jin B, Pegg MS, Stewart WS, Wu W-Y (1993)Glyconconj J 10: 40–44.Google Scholar
  15. 15.
    von Itzstein M, Jin B, Wu W-Y, Chandler M (1993)Carbohydr Res 244: 181–85.Google Scholar
  16. 16.
    von Itzstein M, Wu W-Y, Jin B (1994)Carbohydr Res 259: 301–5.PubMedGoogle Scholar
  17. 17.
    Crennell SJ, Garman EF, Laver WG, Vimr ER, Taylor GL (1993)Proc Natl Acad Sci USA 90: 9852–56.PubMedGoogle Scholar
  18. 18.
    Crennell SJ, Garman EF, Laver WG, Vimr ER, Taylor GL (1994)Structure 2: 534–44.Google Scholar
  19. 19.
    Varghese JN, Laver WG, Colman PM (1983)Nature 303: 35–40.PubMedGoogle Scholar
  20. 20.
    Chong AKJ, Pegg MS, Taylor NR, von Itzstein M (1992)Eur J Biochem 207: 335–43.PubMedGoogle Scholar
  21. 21.
    Taylor NR, von Itzstein M (1994)J Med Chem 37: 616–24.PubMedGoogle Scholar
  22. 22.
    Wilson JC, Angus DI, von Itzstein M (1995)J Am Chem Soc 117: 4214–17.Google Scholar
  23. 23.
    Friebolin H, Baumann W, Brossmer R, Keilich G, Supp M, Ziegler D, von Nicolai H (1981)Biochem Int 3: 321–26.Google Scholar
  24. 24.
    Yuziuk JA, Nakagawa H, Hasegawa A, Kiso M, Li S-C, Li Y-T (1996)Biochem J in press.Google Scholar
  25. 25.
    Li Y-T, Pavlova NV, Noda K, Hasegawa A, Kiso M, Yuziuk JA, Li S-C, Nakagawa H (1994)Glycobiology 4: 732.Google Scholar
  26. 26.
    Kitajima K, Kuroyanagi H, Inoue S, Ye J, Troy FA, Inoue Y (1994)J Biol Chem 269: 21415–19.PubMedGoogle Scholar
  27. 27.
    Bednarski MD, Chenault HK, Simon ES, Whitesides GM (1987)J Am Chem Soc 109: 1283–85.Google Scholar
  28. 28.
    Augé C, Gautheron C (1987)J Chem Soc Chem Commun 859–60.Google Scholar
  29. 29.
    Augé C, Gautheron C, David S, Malleron A, Cavayé B, Bouxom B (1990)Tetrahedron 46: 201–14.Google Scholar
  30. 30.
    Nakamura M, Takayanagi H, Furuhata K, Ogura H (1992)Chem Pharm Bull 40: 879–85.Google Scholar
  31. 31.
    von Itzstein M, Wu W-Y, Phan TV, Danylec B, Jin B (1992)Chem Abs 117: 49151y.Google Scholar
  32. 32.
    Schreiner E, Zbiral E (1990)Liegigs Ann Chem 581–86.Google Scholar
  33. 33.
    Myers RW, Lee RT, Lee YC, Thomas GH, Reynolds LW, Uchida Y (1980)Anal Biochem 101: 166–74.PubMedGoogle Scholar
  34. 34.
    Nakamura M, Furuhata K, Ogura H (1989)Chem Pharm Bull 37: 821–23.Google Scholar
  35. 35.
    Pavlova NV, Noda K, Yuziuk JA, Hasegawa A, Kiso M, Nakagawa H, Li S-C, Li Y-T, manuscript in preparation.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Jennifer C. Wilson
    • 1
  • David C. M. Kong
    • 1
  • Yu-Teh Li
    • 2
  • Mark Von Itzstein
    • 1
  1. 1.Department of Medicinal Chemistry, Victorian College of PharmacyMonash UniversityParkvilleAustralia
  2. 2.Department of BiochemistryTulane University School of MedicineNew OrleansUSA

Personalised recommendations