Journal of Dynamics and Differential Equations

, Volume 5, Issue 2, pp 305–357

Bifurcations toN-homoclinic orbits andN-periodic orbits in vector fields

  • Masashi Kisaka
  • Hiroshi Kokubu
  • Hiroe Oka
Article

Abstract

We study bifurcations of two types of homoclinic orbits—a homoclinic orbit with resonant eigenvalues and an inclination-flip homoclinic orbit. For the former, we prove thatN-homoclinic orbits (N⩾3) never bifurcate from the original homoclinic orbit. This answers a problem raised by Chow-Deng-Fiedler (J. Dynam. Diff. Eq.2, 177–244, 1990). For the latter, we investigate mainlyN-homoclinic orbits andN-periodic orbits forN=1, 2 and determine whether they bifurcate or not under an additional condition on the eigenvalues of the linearized vector field around the equilibrium point.

Key words

Homoclinic orbit inclination-flip homoclinic doubling bifurcation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chow, S.-N., Deng, B., and Fiedler, B. (1990). Homoclinic bifurcation at resonant eigenvalues.J. Dyn. Diff. Eqs. 2, 177–244.Google Scholar
  2. Deng, B. (1989a). The Sil'nikov problem, exponential expansion, strong λ-lemma, C1-linearization, and homoclinic bifurcation.J. Diff. Eqs. 79, 189–231.Google Scholar
  3. Deng, B. (1989b). Exponential expansion with Sil'nikov's saddle-focus.J. Diff. Eqs. 82, 156–173.Google Scholar
  4. Deng, B. (1991). Homoclinic twisting bifurcation and cusp horseshoe maps. Preprint.Google Scholar
  5. Evans, J., Fenichel, N., and Feroe, A. (1982). Double impulse solutions in nerve axon equations.SIAM J. Appl. Math. 42(2), 219–234.Google Scholar
  6. Guckenheimer, J., and Williams, R. F. (1979). Structural stability of Lorenz attractors.Publ. Math. IHES 50, 59–72.Google Scholar
  7. Hirsch, M. W., Pugh, C. C., and Shub, M. (1977).Invariant Manifolds, Lect. Notes Math. Vol. 583, Springer-Verlag, Berlin.Google Scholar
  8. Homburg, A. J., Kokubu, H., and Krupa, M. (1993). The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit. Preprint.Google Scholar
  9. Iori, K. (1992).N-Homoclinic Bifurcations of Continuous Piecewise Linear Vector Fields, Master thesis, Waseda University (in Japanese).Google Scholar
  10. Iori, K., Yanagida, E., and Matsumoto, T. (1993).N-homoclinic bifurcations of piecewiselinear vector fields. In Ushiki, S. (ed.),Structure and Bifurcations of Dynamical Systems, World Scientific, 82–97.Google Scholar
  11. Kisaka, M., Kokubu, H., and Oka, H. (1993). Supplement to homoclinic doubling bifurcation in vector fields. In Bamon, R., Labarca, R., Lewowicz, J., and Palis, J. (eds.),Dynamical Systems, Pitman Research Notes in Mathematics, vol. 285, 92–116, Longman.Google Scholar
  12. Kokubu, H. (1988). Homoclinic and heteroclinic bifurcations of vector fields.Jap. J. Appl. Math. 5, 455–501.Google Scholar
  13. Lorenz, E. N. (1963). Deterministic non-periodic flow,J. Atmos. Sci. 20, 130–141.Google Scholar
  14. Robinson, C. (1989). Homoclinic bifurcation to a transitive attractor of Lorenz type.Nonlinearity 2, 495–518.Google Scholar
  15. Rychlik, M. R. (1990). Lorenz attractors through Sil'nikov-type bifurcation. Part I.Ergod. Th. Dyn. Syst. 10, 793–821.Google Scholar
  16. Sandstede, B. (1993). Verzweigungstheorie homokliner Verdopplungen. University of Stuttgart, thesis.Google Scholar
  17. Sil'nikov, L. P. (1967a). The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus.Soviet Math. Dokl. 8, 54–57 [translation fromDokl. Akad. Nauk SSSR 172 (1967)].Google Scholar
  18. Sil'nikov, L. P. (1967b). The existence of a countable set of periodic motions in the neighborhood of a homoclinic curve.Soviet Math. Dokl. 8, 102–106 [translation fromDokl. Akad. Nauk SSSR 172 (1967)].Google Scholar
  19. Sil'nikov, L. P. (1967c). On a Poincaré-Birkhoff problem.Math. USSR-Sb. 3, 353–371 [translation fromMat. Sb. 74 (1967)].Google Scholar
  20. Sil'nikov, L. P. (1968). On the generation of periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type.Math. USSR-Sb. 6, 427–438 [translation fromMat. Sb. 77 (1968)].Google Scholar
  21. Yanagida, E. (1987). Branching of double pulse solutions from single pulse solutions in nerve axon equations.J. Diff. Eqs. 66, 243–262.Google Scholar
  22. Yanagida, E. Personal communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Masashi Kisaka
    • 1
  • Hiroshi Kokubu
    • 2
  • Hiroe Oka
    • 3
  1. 1.Department of MathematicsUniversity of Osaka PrefectureSakaiJapan
  2. 2.Department of Mathematics, Faculty of ScienceKyoto UniversityKyotoJapan
  3. 3.Department of Applied Mathematics and Informatics, Faculty of Science and TechnologyRyukoku UniversityOtsuJapan

Personalised recommendations