Advertisement

Studia Logica

, Volume 55, Issue 1, pp 23–32 | Cite as

Undecidability, incompleteness and Arnol'd problems

  • Newton C. A. da Costa
  • Francisco A. Doria
Article
  • 32 Downloads

Abstract

We present some recent technical results of us on the incompleteness of classical analysis and then discuss our work on the Arnol'd decision problems for the stability of fixed points of dynamical systems.

Keywords

Dynamical System Mathematical Logic Decision Problem Classical Analysis Computational Linguistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Albeverio, J. E. Fenstad, R. Hoegh-Krohn, T. Lindstrom,Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press (1986).Google Scholar
  2. [2]
    V. I. Arnol'd, ‘Problems of Present Day Mathematics,’ XVII (Dynamical systems and differential equations),Proc. Symp. Pure Math. 28, 59 (1976).Google Scholar
  3. [3]
    V. I. Arnol'd, e-mail message to FAD (1992).Google Scholar
  4. [4]
    J. Casti,Reality rules, II, p. 350–351, John Wiley (1992).Google Scholar
  5. [5]
    B. F. Caviness,J. of the ACM 17, 385 (1970).Google Scholar
  6. [6]
    N. C. A. da Costa andF. A. Doria,Int. J. Theor. Phys. 30, 1041 (1991).Google Scholar
  7. [7]
    N. C. A. da Costa and F. A. Doria, ‘On Arnol'd's Hilbert Symposium Problems,’ in G. Gottlob, A. Leitsch, D. Mundici, eds.,Proceedings of the 1993 Kurt Gödel Colloquium: Computational Logic and Proof Theory, Lecture Notes in Computer Science713, Springer (1993), pp. 152–158.Google Scholar
  8. [8]
    N. C. A. da Costa andF. A. Doria,Int. J. Theor. Phys. 33, 1913 (1994).Google Scholar
  9. [9]
    N. C. A. da Costa and F. A. Doria, ‘Gödel Incompleteness, Explicit Expressions for Complete Degrees and Applications,’ to appear inComplexity 1 (1995).Google Scholar
  10. [10]
    N. C. A. da Costa, F. A. Doria andA. F. Furtado-do-Amaral, ‘A Dynamical System where Proving Chaos is Equivalent to Proving Fermat's Conjecture,’Int. J. Theor. Phys. 32, 2187–2206 (1993).Google Scholar
  11. [11]
    N. C. A. da Costa, F. A. Doria, J. A. Baêta Segundo, D. Krause, ‘On Arnol'd's 1974 Hilbert Symposium Problems,’ to appear (1993).Google Scholar
  12. [12]
    M. Davis, ‘Hilbert's Tenth Problem is Unsolvable,’ inComputability and Unsolvability, 2nd. edition, Dover (1982).Google Scholar
  13. [13]
    F. A. Doria, in J. Casti and J. Traub,On limits, preprint 94-10-056, Santa Fe Institute (1994).Google Scholar
  14. [14]
    E. Hopf,Sachsische Akad. der Wiss.,Math.-Phys. Serie 94, 1 (1942).Google Scholar
  15. [15]
    J. E. Marsden, M. McCracken,The Hopf Bifurcation and its Applications, Springer (1976).Google Scholar
  16. [16]
    D. Miller,Critical rationalism, Open Court, Chicago (1994).Google Scholar
  17. [17]
    D. Richardson,J. Symbol. Logic 33, 514 (1968).Google Scholar
  18. [18]
    I. Stewart,Nature 352, 664 (1991).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Newton C. A. da Costa
    • 1
  • Francisco A. Doria
    • 2
  1. 1.Research Group on Logic and Foundations Institute for Advanced StudiesUniversity of São PauloSão Paulo SPBrazil
  2. 2.Research Center on Math. Theories of Communication School of CommunicationsFed. Univ. at Rio de JaneiroRio RJBrazil

Personalised recommendations