, Volume 18, Issue 4, pp 307–314 | Cite as

Dendritic action potentials of pyramidal tract neurons in the cat sensorimotor cortex

  • T. Sh. Labakhua
  • M. G. Kokaya
  • V. M. Okudzhava


The intracellular activity of pyramidal tract neurons was studied during electrical stimulation of ventrolateral and ventroposterolateral thalamic nuclei in acute experiments on cats immobilized by myorelaxants. Somatic action potentials were observed and spontaneous spikes were also produced by single and rhythmic stimulation of the thalamic nuclei at the rate of 8–14 Hz, by iontophoretic application of strychnine, and by intracellular depolarizing current pulses. These potentials had a relatively low and variable amplitude of 5–60 mV and are presumed to be dendritic action potentials. It is postulated that these variable potentials arise in the dendrites of pyramidal neurons with multiple zones generating such activity. No interaction was observed where somatic and dendritic action potentials occur simultaneously. The possible functional role of dendritic action potentials is discussed.


Electrical Stimulation Current Pulse Pyramidal Neuron Variable Potential Variable Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. S. Voronkov and V. I. Gusel'nikov, “Dendritic spike activity,” Nauchn. Dokl. Vyssh. Shkoly, Ser. Biol. Nauki, No. 8, 7–26 (1978).Google Scholar
  2. 2.
    P. G. Kostyuk and O. A. Kryshtal', Mechanisms of Electrical Excitability of Nerve Cells [in Russian], Nauka, Moscow (1981).Google Scholar
  3. 3.
    T. Sh. Labakhuya, M. G. Kokaya, and V. M. Okudzhava, “Dendritic spike activity in pyramidal neurons of the cerebral cortex,” Dokl. Acad. Nauk. SSSR,271, No. 5, 1271–1273 (1983).Google Scholar
  4. 4.
    P. Andersen, “Interhippocampal impulses. 2. Apical dendritic activation of CA neurons,” Acta Physiol. Scand.,48, No. 1, 178–208 (1960).PubMedGoogle Scholar
  5. 5.
    S. Y. Assaf, V. Cruneli, and J. S. Kelly, “Small amplitude spikes recorded intracellularly from the rat dentate gyrus,” J. Physiol.,317, 35–41 (1981).Google Scholar
  6. 6.
    K. G. Bainbridge and J. J. Miller, “Calcium uptake and retention during long-term potentiation of neuronal activity in the rat hippocampal slice preparation,” Brain Res.,221, No. 2, 299–305, (1981).PubMedGoogle Scholar
  7. 7.
    M. V. L. Bennet, “Electrical transmission. A functional analysis and comparison to chemical transmission,” in: Handbook of Physiology, Sect. 1, The Nervous System, S. R. Geiger, ed., Am. Physiol. Soc., Bethesda (1977), pp. 305–416.Google Scholar
  8. 8.
    G. Czeh, “The role of dendritic events in the inhibition of monosynaptic spikes in frog motoneurones,” Brain Res.,39, No. 4, 505–509 (1972).PubMedGoogle Scholar
  9. 9.
    M. Deschenes, “Dendritic spikes induced in fast pyramidal tract neurons by thalamic stimulation,” Exp. Brain Res.,43, No. 3/4, 304–308 (1981).PubMedGoogle Scholar
  10. 10.
    W. W. Douglas and P. S. Taraskevich, “Slowing effects of dopamine and calcium-channel blockers on frequency of sodium spikes in rat pars intermedia cells,” J. Physiol.,326, 201–211 (1982).PubMedGoogle Scholar
  11. 11.
    J. C. Eccles, B. Libet, and R. R. Young, “The behaviour of chromatolyzed motoneurons studied by intracellular recording,” J. Physiol.,143, No. 1, 11–40 (1958).PubMedGoogle Scholar
  12. 12.
    E. Fournier and F. Crepel, “Electrophysiological properties of dendate granule cells in mouse hippocampal slices maintainedin vitro,” Brain Res.,311, No. 1, 75–86 (1984).PubMedGoogle Scholar
  13. 13.
    J. Garcia Ramos, “Sobre fisiologia de las dendritas corticales,” Bot. Estad. Med. Biol.,31, No. 3/4, 181–189 (1980).Google Scholar
  14. 14.
    J. R. Hoston and D. A. A. Prince, “A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons” J. Neurophysiol.,43, No. 3, 409–419 (1980).PubMedGoogle Scholar
  15. 15.
    H. Jasper and C. Ajmone-Marsan, “Diencephalon of the cat” in: Electrical Stimulation of the Brain, Univ. Texas Press, Austin (1961), pp. 203–231.Google Scholar
  16. 16.
    M. Kuno and R. Llinas, “Enhancement of synaptic transmission by dendritic potentials in chromatolyzed motoneurons” J. Physiol.201, No. 4, 807–821 (1970).Google Scholar
  17. 17.
    W. M. Landau, “An analysis of the cortical response to antidromic pyramidal tract stimulation in the cat” Electroencephalogr. Clin. Neurophysiol.,8, No. 3, 445–456 (1956).Google Scholar
  18. 18.
    R. Llinas and C. Nickolson, “Electrophysiological properties of dendrites and somata in alligator Purkinje cells” J. Neurophysiol.,33, No. 4, 532–551 (1971).Google Scholar
  19. 19.
    R. Llinas and M. Sugimori, “Electrophysiological properties ofin vitro Purkinje cell dendrites in mammalian cerebellar slices” J. Physiol.,305, 197–213 (1980).PubMedGoogle Scholar
  20. 20.
    K. Maekawa and D. P. Purpura, “Properties of spontaneous and evoked synaptic activities of thalamic ventrobasal neurons” J. Neurophysiol.,30, No. 27, 260–281 (1967).Google Scholar
  21. 21.
    B. A. MacVicar and F. E. Dudek, “Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices” Science,213, No. 4509, 782–785 (1981).PubMedGoogle Scholar
  22. 22.
    K. Okamoto, H. Kimura, and G. Sakai, “Miniature synaptic potentials recorded intracellularly from Purkinje cell dendrites in guinea pig cerebellar slices” Brain Res.,311, No. 2, 281–282 (1984).PubMedGoogle Scholar
  23. 23.
    J. H. Peacock and C. R. Walker, “Development of calcium action potentials in mouse hippocampal cell cultures” Dev. Brain Res.,8, No. 1, 39–52 (1983).Google Scholar
  24. 24.
    W. Precht, A. Richter, S. Ozawa, and N. Shimazu, “Intracellular study of frog's vestibular neurons in relation to the labyrinth and spinal cord” Exp. Brain Res.,19, No. 2, 377–393 (1974).PubMedGoogle Scholar
  25. 25.
    R. Pumain, “Electrophysiological abnormalities in chronic epileptogenic foci in intracellular study” Brain Res.,219, No. 2, 445–450 (1981).PubMedGoogle Scholar
  26. 26.
    D. A. Purpura, L. C. F. McMurty, and A. Malliani, “Evidence for dendritic origin of spikes without depolarizing prepotentials in hippocampal neurons during and after seizure” J. Neurophysiol.,29, No. 5, 954–979 (1966).PubMedGoogle Scholar
  27. 27.
    D. P. Purpura, R. J. Shafer, and T. Scoff, “Properties of synaptic activities and spike potentials of neurons in immature neocortex” J. Neurophysiol.,28, No. 5, 925–942 (1965).PubMedGoogle Scholar
  28. 28.
    W. Rall, G. M. Shepherd, T. S. Reese, and M. W. Brightman, “Dendro-dendritic synaptic pathway for inhibition in the olfactory bulb” Exp. Neurol.,14, No. 1, 44–56 (1966).PubMedGoogle Scholar
  29. 29.
    F. Reinoso-Suarez, Topografischer Hirnatlas der Katze, Merck, Darmstadt (1961).Google Scholar
  30. 30.
    W. A. Spencer and E. R. Kandel, “Electrophysiology of hippocampal neurons. 4. Fast prepotentials” J. Neurophysiol.,24, No. 1, 272–285 (1961).Google Scholar
  31. 31.
    P. A. Schwartzkroin and D. A. Prince, “Cellular and field potential properties of epileptogenic hippocampal” Brain Res.,147, No. 1, 117–330 (1978).PubMedGoogle Scholar
  32. 32.
    C. Stefanis and H. H. Jasper, “Intracellular microelectrode studies of antidromic responses in cortical pyramidal tract neurons” J. Neurophysiol.,27, No. 5, 828–854 (1964).PubMedGoogle Scholar
  33. 33.
    J. T. Williams, R. A. North, S. A. Shefer, et al., “Membrane properties of rat locus coeruleus neurons” Neuroscience,13, No. 1, 137–156 (1984).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • T. Sh. Labakhua
  • M. G. Kokaya
  • V. M. Okudzhava

There are no affiliations available

Personalised recommendations