Fluid Dynamics

, Volume 22, Issue 2, pp 299–305 | Cite as

Stability of quasilongitudinally propagating solitons in a plasma with hall dispersion

  • M. S. Ruderman
Article

Abstract

By analogy with the generalization obtained in [16] for the Korteweg-de Vries equation, the derivative nonlinear Schrödinger equation is extended to the weakly non-one-dimensional case. On the basis of the equation obtained the stability of solitons propagating at small angles to the undisturbed magnetic field relative to non-one-dimensional perturbations is investigated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. B. Baranov and M. S. Ruderman, “Waves in a plasma with Hall dispersion,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 108 (1974).Google Scholar
  2. 2.
    M. S. Ruderman, “Method of obtaining the Korteweg-de Vries-Burgers equation,” Prikl. Mat. Mekh.,39, 686 (1975).Google Scholar
  3. 3.
    M. S. Ruderman, “Waves in an inhomogeneous plasma with Hall dispersion,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 139 (1976).Google Scholar
  4. 4.
    M. S. Ruderman, “Effect of refraction on the propagation of magnetoacoustic waves in an inhomogeneous plasma,” Fiz. Plazmy,3, 1225 (1977).Google Scholar
  5. 5.
    E. Mjolhus, “On the modulational instability of hydromagnetic waves parallel to the magnetic field,” J. Plasma Phys.,16, 321 (1976).Google Scholar
  6. 6.
    K. Mio, T. Ogino, K. Minami, and S. Takeda, “Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasma,” J. Phys. Soc. Jpn.,41., 265 (1976).Google Scholar
  7. 7.
    S. R. Spangler and J. P. Sheerin, “Properties of Alfvén solitons in a finite-beta plasma,” J. Plasma Phys.,27, 193 (1982).Google Scholar
  8. 8.
    K. Mio, T. Ogino, K. Minami, and S. Takeda, “Modulational instability and envelopesolitons for nonlinear Alfvén waves propagating along the magnetic field in plasma,” J. Phys. Soc. Jpn.,41, 667 (1976).Google Scholar
  9. 9.
    Y.-H. Ichikawa, K. Konno, M. Wadati, and H. Sanuki, “Spiky soliton in circular polarized Alfvén wave,” J. Phys. Soc. Jpn.,48, 279 (1980).Google Scholar
  10. 10.
    D. J. Kaup and A. C. Newell, “An exact solution for a derivative nonlinear Schrödinger equation,” J. Math. Phys.,19, 798 (1978).Google Scholar
  11. 11.
    T. Kawata and H. Inoue, “Exact solutions of the derivative nonlinear Schrödinger equation under the nonvanishing conditions,” J. Phys. Soc. Jpn.,44, 1968 (1978).Google Scholar
  12. 12.
    M. Wadati, K. Konno, and Y.-H. Ichikawa, “A generalization of inverse scattering method,” J. Phys. Soc. Jpn.,46, 1965 (1979).Google Scholar
  13. 13.
    T. Kawata, J. Sakai, and N. Kobayashi, “Inverse method for the mixed nonlinear Schrö dinger equation and soliton solutions,” J. Phys. Soc. Jpn.,48, 1371 (1980).Google Scholar
  14. 14.
    G. L. Payne, D. R. Nicholson, and R. M. Downie, “Numerical solution of the Zakharov equations,” J. Comput. Phys.,50, 482 (1983).Google Scholar
  15. 15.
    S. R. Spangler, J. P. Sheerin, and G. L. Payne, “A numerical study of nonlinear Alfvén waves and solitons,” Phys. Fluids,28, 104 (1985).Google Scholar
  16. 16.
    B. B. Kadomtsev and V. I. Petviashvili, “Stability of solitary waves in weakly dispersing media,” Dokl. Akad. Nauk SSSR,192, 753 (1970).Google Scholar
  17. 17.
    M. S. Ruderman, “Quasilongitudinal propagation of narrow beams of nonlinear magnetohydrodynamic waves,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 21 (1986).Google Scholar
  18. 18.
    A. I. Osin, “Solitons in a plasma with Hall dispersion,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 161 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • M. S. Ruderman
    • 1
  1. 1.Moscow

Personalised recommendations