Journal of Theoretical Probability

, Volume 2, Issue 4, pp 487–501

Time changes of symmetric Markov processes and a Feynman-Kac formula

  • P. J. Fitzsimmons


We prove a Feynman-Kac formula in the context of symmetric Markov processes and Dirichlet spaces. This result is used to characterize the Dirichlet space of the time change of an arbitrary symmetric Markov process, completing work of Silverstein and Fukushima.

Key Words

Dirichlet space time change Feynman-Kac formula symmetric process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blumenthal, R. M. (1986). A decomposition of excessive measures,Seminar on Stochastic Processes 1985, pp. 1–8, Birkhäuser, Boston.Google Scholar
  2. 2.
    Blumenthal, R. M., and Getoor, R. K. (1968).Markov Processes and Potential Theory. Academic Press, New York.Google Scholar
  3. 3.
    Dynkin, E. B. (1980). Minimal excessive measures and functions,Trans. Am. Math. Soc. 258, 217–244.Google Scholar
  4. 4.
    Fitzsimmons, P. J. (1989). Markov processes and nonsymmetric Dirichlet forms without regularity. To appear inJ. Func. Anal.Google Scholar
  5. 5.
    Fitzsimmons, P. J. and Getoor, R. K. (1988). On the potential theory of symmetric markov processes.Math. Ann. 281, 495–512.Google Scholar
  6. 6.
    Fukushima, M. (1980).Dirichlet Forms and Markov Processes, North-Holland, Amsterdam.Google Scholar
  7. 7.
    Fukushima, M. (1986). On recurrence in the Dirichlet space theory,From Local Times to Global Geometry Control and Physics, pp. 100–110, Pitman Research Notes in Math. Series, Longman, New York.Google Scholar
  8. 8.
    Getoor, R. K., and Sharpe, M. J. (1984). Naturality, standardness, and weak dualitty for Markov processes.Z. Warsch. verw. Geb. 67, 1–62.Google Scholar
  9. 9.
    Le Jan, Y. (1983). Quasi-continuous functions and Hunt processes.J. Math. Soc. Japan 35, 37–42.Google Scholar
  10. 10.
    Oshima, Y. (1982). Potential of recurrent symmetric Markov processes and its associated Dirichlet spaces.Functional Analysis in Markov Processes, pp. 260–275, Lecture Notes in Math. No. 923, Springer-Verlag, Berlin.Google Scholar
  11. 11.
    Oshima, Y. (1988). On times change of symmetric markov processes. To appear inOsaka J. Math.Google Scholar
  12. 12.
    Nakao, S. (1988). Feynman-Kac formula in Dirichlet space Preprint.Google Scholar
  13. 13.
    Sharpe, M. J. (1988).General Theory of Markov Processes, Academic Press, New York.Google Scholar
  14. 14.
    Silverstein, M. (1974(Symmetric Markov Processes, Lecture Notes in Math. No. 426, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • P. J. Fitzsimmons
    • 1
  1. 1.Department of Mathematics, C-012University of California, San DiegoLa Jolla

Personalised recommendations