Fluid Dynamics

, Volume 14, Issue 2, pp 283–289 | Cite as

Change in the thickness of an incompressible turbulent boundary layer in the presence of a longitudinal pressure gradient

  • B. A. Kader


Dimensional analysis is used to find the change in the thickness of a turbulent boundary layer that develops under conditions of a strong positive or negative pressure gradient. Comparison of the expression for the thickness with the available experimental data makes it possible to determine the universal constant in the expression. An interpolation dependence is proposed, this holding for all not too rapidly varying velocity distributions on the outer boundary of the turbulent boundary layer. The results of calculations made with this dependence are compared with numerous experimental data on the change in the thickness of turbulent boundary layers.


Experimental Data Boundary Layer Pressure Gradient Velocity Distribution Negative Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. G. Loitsyanskii, Laminar Boundary Layers [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  2. 2.
    H. Schlichtung, Boundary Layer Theory, McGraw-Hill, New York (1968).Google Scholar
  3. 3.
    A. S. Monin and A. M. Yaglom, Statistical Hydrodynamics, Part 1 [in Russian], Nauka, Moscow (1965).Google Scholar
  4. 4.
    I. K. Rotta, Turbulent Boundary Layers in Incompressible Fluids [in Russian], Sudostroenie, Leningrad (1967).Google Scholar
  5. 5.
    K. K. Fedyaevskii, A. S. Gineskii, and A. V. Kolesnikov, Calculation of Turbulent Boundary Layers in an Incompressible Fluid [in Russian], Sudostroenie, Leningrad (1973).Google Scholar
  6. 6.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford (1959).Google Scholar
  7. 7.
    “Computation of turbulent boundary layers,” Proc. 1968 AFOSR-IFP Stanford Conf., Vol. 1, 2, Stanford Univ. Press (1969).Google Scholar
  8. 8.
    B. A. Kader and A. M. Yaglom, “Application of dimensional analysis to the calculation of decelerated turbulent boundary layers,” Dokl. Akad. Nauk SSSR, 233, No. I (1977).Google Scholar
  9. 9.
    Th. von Kármán, Mechanische Ähnlichkeit und Turbulenz. Collected Works of Th. von Kármán, Vol. 2, Butterworths Sci. Publ., London (1956).Google Scholar
  10. 10.
    Present State of the Hydro- and Aerodynamics of a Viscous Fluid, Vol. 2 [Russian translations], Izd-vo Inostr. Lit., Moscow (1948).Google Scholar
  11. 11.
    B. Hudimoto, “A method for the calculation of the turbulent boundary layer with pressure gradient,” Mem. Fac. Eng. Kyoto Univ.,27, No. 4 (1965).Google Scholar
  12. 12.
    G. M. Bam-Zelikovich, “Calculation of boundary layer separation,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 12 (1954).Google Scholar
  13. 13.
    J. Sternberg, “The transition from a turbulent to a laminar boundary layer,” U.S. Army Bal. Res. Lab. Aberdeen, Rep. 906 (1954).Google Scholar
  14. 14.
    A. A. Sergienko and V. K. Gretsov, “Transition from a turbulent to a laminar boundary layer,” Dokl. Akad. Nauk SSSR,125, No. 4 (1959).Google Scholar
  15. 15.
    A. E. Samuel and P. N. Joubert, “A boundary layer developing in an increasingly adverse pressure gradient,” J. Fluid Mech.,66, No. 3 (1974).Google Scholar
  16. 16.
    R. L. Simpson, J. H. Strickland, and P. W. Barr, “Features of a separating turbulent boundary layer in the vicinity of separation,” J. Fluid Mech.,79, No. 3 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • B. A. Kader
    • 1
  1. 1.Moscow

Personalised recommendations