Journal of Fusion Energy

, Volume 6, Issue 3, pp 285–305 | Cite as

The spherical pinch

  • E. Panarella
Contributed Papers

Abstract

This is essentially a review article covering several years of work on the spherical pinch (SP) concept of plasma formation and containment. Central to this concept is the creation of a hot plasma in the center of a sphere, plasma which is then compressed by strong imploding shock waves launched from the periphery of the vessel. The experimental program, which started with the classical cylindrical theta-pinch and continued with the inductive spherical pinch, has taken a turn, in recent times, with the discovery of the scaling laws governing spherical pinch experiments, which prescribe that high gas pressures are required for achieving fusion breakeven conditions. As a consequence, energy deposition in present spherical pinch devices is done through resistive, rather than inductive, discharges. In a pilot experimental program of modest initial condenser bank energy (∼ 1 KJ), we find that the instantaneous energy deposition in the central plasma can lead to temperatures of the order of 2 KeV, in agreement with the prediction of the Braginskii resistivity for such a plasma, and with the relation to the velocity of the diverging shock wave generated by the sudden deposition of energy into this plasma. Moreover, when the imploding shock waves contain the central plasma, we find the containment time to be as long as 5.4μ sec and the plasma to be stable. In discharges in deuterium, neutrons are emitted close to 107 per shot. From the experimental parameters of the plasma, one can derive a particle density for the shocked gas equal to 3.21×1019 cm−3, a plasma temperature equal to 730 eV and a product=1.73 × 1014 cm−3· sec.

Key words

Spherical pinch inertial confinement fusion shock wave compression pinch phenomena 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. A. B. Bodin and D. J. Dancy,Nuc. Fusion,7, 191 (1967).Google Scholar
  2. 2.
    N. J. Phillips,Proc. Phys. Soc.,19, 171 (1962).Google Scholar
  3. 3.
    E. M. Little, W. E. Quinn, and F. L. Ribe,Phys. Fluids,4, 711 (1961).Google Scholar
  4. 4.
    E. Panarella, C.A.S.I. (Canadian Aeronautics and Space Institute)Transactions,2, 21 (1969).Google Scholar
  5. 5.
    E. Panarella,Can. Jour. Phys.,58, 983 (1980).Google Scholar
  6. 6.
    F. Cornolti, F. Giammanco, and A. Giulietti,Lett. Nuovo. Cim.,19, 165 (1977); A. Giulietti, M. Vaselli, and F. Giammanco,Opt. Comm.,33, 257 (1980); A. Giulietti, D. Giulietti, M. Lucchesi, and M. Vaselli,Opt. Comm.,41, 131 (1983); F. Cornolti, A. Giulietti, D. Giulietti, M. Lucchesi, and M. Vaselli,Opt. Comm.,51, 249 (1986).Google Scholar
  7. 7.
    S. I. Braginskii,Sov. Phys. JETP,34, 1068 (1958).Google Scholar
  8. 8.
    I. I. Glass, and J. Gordon Hall,Handbook of Supersonic Aerodynamics, Vol. 6, Sec, 18, (Navord Report 1488, 1959), p. 93, 286.Google Scholar
  9. 9.
    R. P. Gupta, E. Panarella, and P. Silvester, inFinite elements in Fluids, Vol. 4, R. H. Gallagher, D. H. Norrie, J. T. Oden, and O. C. Zienldewicz, Eds. (John Wiley & Sons, 1982), p. 551.Google Scholar
  10. 10.
    E. Panarella and V. Guty,Proceedings of the 10th European Conference on Thermonuclear Fusion and Plasma Physics (Moscow, U.S.S.R., 1981), p. 297.Google Scholar
  11. 11.
    E. Panarella and V. Guty,Proceedings of the IEEE International Conference on Plasma Science, Ottawa, Canada, 17–19 May 1982, p. 135.Google Scholar
  12. 12.
    E. Panarella and P. Savic,J. Fusion Energy,3, 199 (1983).Google Scholar
  13. 13.
    B. Ahlborn and M. H. Key,Plasma Phys.,23, 435 (1981).Google Scholar
  14. 14.
    I. D. Lawson,Proc. Phys. Soc. B,70, 6 (1957).Google Scholar
  15. 15.
    P. Savic and E. Panarella,J. Appl. Phys.,59, 3990 (1986).Google Scholar
  16. 16.
    E. Panarella and V. Guty,Proceedings of the 12th European Conference on Thermonuclear Fusion and Plasma Physics, Budapest, Hungary, September 2–6, 1985, p. 606.Google Scholar
  17. 17.
    C. H. Watson-Munro, inAn Introduction to Discharge and Plasma Physics, S. C. Haydon, Ed. (The University of New England, 1964), p. 425.Google Scholar
  18. 18.
    E. M. Little, W. E. Quinn, F. L. Ribe, and G. A. Sawyer,Nucl. Fus., Suppl. Part 2, 497 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • E. Panarella
    • 1
    • 2
  1. 1.National Research CouncilOttawaCanada
  2. 2.Research DivisionAdvanced Laser and Fusion Technology, Inc.USA

Personalised recommendations