Journal of Statistical Physics

, Volume 69, Issue 3–4, pp 667–687 | Cite as

An exact solution of a one-dimensional asymmetric exclusion model with open boundaries

  • B. Derrida
  • E. Domany
  • D. Mukamel


A simple asymmetric exclusion model with open boundaries is solved exactly in one dimension. The exact solution is obtained by deriving a recursion relation for the steady state: if the steady state is known for all system sizes less thanN, then our equation (8) gives the steady state for sizeN. Using this recursion, we obtain closed expressions (48) for the average occupations of all sites. The results are compared to the predictions of a mean field theory. In particular, for infinitely large systems, the effect of the boundary decays as the distance to the power −1/2 instead of the inverse of the distance, as predicted by the mean field theory.

Key words

Asymmetric exclusion process steady state phase diagram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985).Google Scholar
  2. 2.
    R. Kutner,Phys. Lett. A 81:239 (1981).Google Scholar
  3. 3.
    H. van Beijeren, K. W. Kehr, and R. Kutner,Phys. Rev. B 28:5711 (1983).Google Scholar
  4. 4.
    P. A. Ferrari,Ann. Prob. 14:1277 (1986).Google Scholar
  5. 5.
    A. De Masi and P. Ferrari,J. Stat. Phys. 36:81 (1984).Google Scholar
  6. 6.
    D. Kandel and E. Domany,J. Stat. Phys. 58:685 (1990); D. Kandel, E. Domany, and B. Nienhuis,J. Phys. A 23:L755 (1990).Google Scholar
  7. 7.
    J. P. Marchand and P. A. Martin,J. Stat. Phys. 44:491 (1986).Google Scholar
  8. 8.
    D. Dhar,Phase Transitions 9:51 (1987).Google Scholar
  9. 9.
    J. Krug and H. Spohn, inSolids far from Equilibrium: Growth, Morphology and Defects, C. Godreche, ed. (Cambridge University Press, Cambridge, 1991).Google Scholar
  10. 10.
    M. Kardar, G. Parisi, and Y. Zhang,Phys. Rev. Lett. 56:889 (1986).Google Scholar
  11. 11.
    J. Krug,Phys. Rev. Lett. 67:1882 (1991).Google Scholar
  12. 12.
    D. E. Wolf and L. H. Tang,Phys. Rev. Lett. 65:1591 (1990).Google Scholar
  13. 13.
    D. Kandel and D. Mukamel,Europhys. Lett. (1992), in press.Google Scholar
  14. 14.
    J. Cook and D. E. Wolf,J. Phys. A 24:L351 (1991).Google Scholar
  15. 15.
    H. Rost,Z. Wahrsch. Verw. Geb. 58:41 (1981).Google Scholar
  16. 16.
    A. Galves, C. Kipnis, C. Macchioro, and E. Presutti,Commun. Math. Phys. 81:127 (1981).Google Scholar
  17. 17.
    B. Derrida, J. L. Lebowitz, E. R. Speer, and H. Spohn,Phys. Rev. Lett. 67:165 (1991);J. Phys. A 24:4805 (1991).Google Scholar
  18. 18.
    S. A. Janowsky and J. L. Lebowitz,Phys. Rev. A 45:618 (1992).Google Scholar
  19. 19.
    L. H. Gwa and H. Spohn,Phys. Rev. Lett. 68:725 (1992).Google Scholar
  20. 20.
    H. van Beijeren, R. Kutner, and H. Spohn,Phys. Rev. Lett. 54:2026 (1985).Google Scholar
  21. 21.
    J. Krug, Private communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • B. Derrida
    • 1
  • E. Domany
    • 2
  • D. Mukamel
    • 3
  1. 1.Service de Physique ThéoriqueCE SaclayGif sur YvetteFrance
  2. 2.Department of ElectronicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.Department of PhysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations