Global stability for infinite-delay, dispersive Lotka-Volterra systems: Weakly interacting populations in nearly identical patches

  • Y. Kuang
  • H. L. Smith
  • R. H. Martin
Article

Abstract

A Lotka-Volterra-like model ofm interacting species which can disperse amongn discrete habitats and where species interaction terms involve general unbounded delays is shown to possess a globally stable equilibrium when the undelayed intraspecific competition term dominates interspecific interactions as well as the delayed intraspecific competition effect and when then habitats are nearly identical.

Key words

Global Stability diffusive-delay Lotka-Volterra system discrete patches Razumikhin function infinite delay 

AMS (MOS) subject classifications

Primary 34K30 Secondary 35R10, 34K15, 92A15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, F. V., and Haddock, J. R. (1988). On determining phase space for functional differential equations.Funkcialaj Ekvacioj 31, 331–347.Google Scholar
  2. Beretta, E., Solimano, F. (1988). A generalization of Volterra models with continuous time delay in population dynamics: Boundedness and global asymptotic stability.SIAM J. Appl. Math. 48, 607–626.Google Scholar
  3. Beretta, E., and Takeuchi, Y. (1988). Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delay.SIAM J. Appl. Math. 48, 627–651.Google Scholar
  4. Berman, A., and Plemmons, R. J. (1979).Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York.Google Scholar
  5. Cushing, J. M. (1977).Integrodifferential Equations and Delay Models in Population Dynamics, Lect. Notes Biomath., 20, Springer, New York.Google Scholar
  6. Dunkel, G. (1968). Single species model for population growth depending on past history. InSeminar on Differential Equations and Dynamical Systems, Lect. Notes Math., 20, Springer Verlag, New York, 1968, pp. 92–99.Google Scholar
  7. Goh, B. S. (1977). Global stability in many species systems.Am. Nat. 111, 135–143.Google Scholar
  8. Haddock, Krisztin, T., Terjéki, J. (1985). Invariance principles for autonomous functional differential equations.J. Integral Eq. 10, 123–136.Google Scholar
  9. Haddock, J. R. (1985). Friendly spaces for functional differential equations with infinite delay. In V. Lakshmikantham (ed.),Trends in the Theory and Practice on Nonlinear Analysis, North-Holland, Amsterdam, pp. 173–182.Google Scholar
  10. Haddock, J. R., and Hornor, W. E. (1988). Precompactness and convergence in norm of positive orbits in a certain fading memory space.Funkcialaj Ekvacioj 31, 349–361.Google Scholar
  11. Hale, J. K., and Kato, J. (1978). Phase space for retarded equations with infinite delay.Funkcialaj Ekvacioj 21, 11–41.Google Scholar
  12. Hastings, A. (1978). Global stability in Lotka-Volterra systems with diffusion.J. Math. Biol. 6, 163–168.Google Scholar
  13. Hofbauer, J., and Sigmund, K. (1988).The Theory of Evolution and Dynamical Systems, London Math. Soc. Student Texts, 7, Cambridge.Google Scholar
  14. Jones, G. S. (1962). The existence of periodic solutions off′(x)=−αf(x−1){1+x(x)}.J. Math. Anal. Appl. 5, 435–450.Google Scholar
  15. Kuang, Y. (1989). Global stability and oscillation in delay-differential equations for single-species population growths (submitted for publication).Google Scholar
  16. Kuang, Y., and Smith, H. L. (1989). Global stability in diffusive delay Lotka-Volterra systems.J. Diff. Int. Eq. (in press).Google Scholar
  17. Lenhart, S. M., and Travis, C. C. (1986). Global stability of a biological model with time delay.Proc. Am. Math. Soc. 96, 75–78.Google Scholar
  18. Martin, R. H., and Smith, H. L. (1989). Convergence in Lotka-Volterra systems with diffusion and delay. Proc. Workshop Diff. Eq. Appl., Retzhof, Austria, 1989,Lect. Notes Pure Appl. Math., Marcel Dekker, New York.Google Scholar
  19. Sawano, K. (1982). Some considerations on the fundamental theorems for functional differential equations with infinite delay.Funkcialaj Ekvacioj 25, 97–104.Google Scholar
  20. Seifert, G. (1976). Positively invariant closed sets for systems of delay differential equations.J. Diff. Eq. 22, 292–304.Google Scholar
  21. Seifert, G. (1982). On Caratheodory conditions for functional differential equations with infinite delays.Rocky Mt. J. Math. 12, 615–619.Google Scholar
  22. Volterra, V. (1931).Leçons sûr la théorie mathématique de la lutte pour la vie, Gauthiers-Villiars, Paris.Google Scholar
  23. Walther, H. O. (1975). Existence of a non-constant periodic solution of a nonlinear autonomous functional differential equation representing the growth of a single species population.J. Math. Biol. 1, 227–240.Google Scholar
  24. Wörz-Busekros, A. (1978). Global stability in ecological systems with continuous time delay.SIAM J. Appl. Math. 35, 123–134.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Y. Kuang
    • 1
  • H. L. Smith
    • 1
  • R. H. Martin
    • 2
  1. 1.Department of MathematicsArizona State UniversityTempe
  2. 2.Department of MathematicsNorth Carolina State UniversityRaleigh

Personalised recommendations