The twisting tennis racket

  • Mark S. Ashbaugh
  • Carmen C. Chicone
  • Richard H. Cushman


This paper describes, analyzes, and explains a novel twisting phenomenon which occurs in a triaxial rigid body (such as a tennis racket) when it is rotating about an axis initially near its unstable intermediate principal axis.

Key words

Euler equations rigid body motion Euler angles Eulerian wobble 

1980 AMS(MOS) mathematics subject classifications

70E15 58F05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., and Stegun, I. A. (eds.) (1964).Handbook of Mathematical Functions, Applied Mathematics Series, Vol. 55, National Bureau of Standards, Washington, D.C.Google Scholar
  2. Arnol'd, V. I. (1978).Mathematical Methods of Classical Mechanics, Springer-Verlag, New York.Google Scholar
  3. Brody, H. (1985). The moment of inertia of a tennis racket.Phys. Teach. April, 213–216.Google Scholar
  4. Colley, S. J. (1987). The tumbling box.Am. Math. Month. 94, 62–68. [See also (1987). Letter to the editor. Am. Math. Month.94, 646].Google Scholar
  5. Goldstein, H. (1950).Classical Mechanics, Addison-Wesley, Reading, Mass.Google Scholar
  6. Gradshteyn, I. S., and Ryzhik, I. M. (1980).Table of Integrals, Series and Products, corrected and enlarged ed., Academic Press, New York.Google Scholar
  7. Klein, F., and Sommerfeld, A. (1897–1910).Über die Theorie des Kreisels (4 vols.), B. G. Teubner, Leipzig.Google Scholar
  8. Landau, L. D., and Lifshitz, E. M. (1976).Mechanics, 3rd ed., Pergamon Press, Oxford.Google Scholar
  9. Rauch, H., and Lebowitz, A. (1973).Elliptic Functions, Theta Functions, and Riemann Surfaces, Williams and Wilkins, Baltimore.Google Scholar
  10. Tricomi, F. G. (1953).Differential Equations, Blackie and Son, London.Google Scholar
  11. Webster, A. G. (1920).The Dynamics of Particles and of Rigid, Elastic, and Fluid Bodies, Stechert-Hafner, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Mark S. Ashbaugh
    • 1
  • Carmen C. Chicone
    • 1
  • Richard H. Cushman
    • 2
  1. 1.Department of MathematicsUniversity of MissouriColumbia
  2. 2.Mathematics InstituteRijksuniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations