Journal of Logic, Language and Information

, Volume 4, Issue 3, pp 207–226 | Cite as

Taming logic

  • Maarten Marx
  • Szabolcs Mikul
  • István Németi
Article

Abstract

In this paper, we introduce a general technology, calledtaming, for finding well-behaved versions of well-investigated logics. Further, we state completeness, decidability, definability and interpolation results for a multimodal logic, calledarrow logic, with additional operators such as thedifference operator, andgraded modalities. Finally, we give a completeness proof for a strong version of arrow logic.

Key words

arrow logic modal logic completeness decidability difference operator graded modalities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andréka, H., 1991a, “Representation of distributive semilattice-ordered semigroups with binary relations”,Algebra Universalis 28, 12–25.Google Scholar
  2. Andréka, H., 1991b, “Complexity of the equations valid in algebras of relations”, Thesis for D.Sc. with the Hungarian Academy of Sciences, Budapest.Google Scholar
  3. Andréka, H., Kurucz, á., Németi, I., Sain, I. and Simon, A., 1994a, “Exactly which logics touched by the dynamic trend are decidable?”, pp. 67–86 inProc. of 9th Amsterdam Coll., D. Dekker and M. Stokhof, eds., University of Amsterdam.Google Scholar
  4. Andréka, H., Mikulás, Sz., and Németi, I., 1994b, “You can decide differently: decidability of relativized representable relation algebras with graded modalities”, manuscript, Mathematical Institute, Budapest.Google Scholar
  5. Andréka, H. and Németi, 1994, “Craig interpolation does not imply amalgamation after all”, manuscript, Mathematical Institute, Budapest.Google Scholar
  6. Andréka, H., Németi, I., and Sain, I., 1995a,Algebras of Relations and Algebraic Logic, to appear.Google Scholar
  7. Andréka, H., Németi, I., Sain, I., and Kurucz, á., 1995b, “Methodology of applying algebraic logic to logic”, manuscript, Mathematical Institute, Budapest.Google Scholar
  8. Andréka, H., van Benthem, J., and Németi, I., 1995d, “Back and forth between modal logic and classical logic”, ILLC Research Report ML-95-04, University of Amsterdam, revised versionBulletin of IGPL, to appear.Google Scholar
  9. Andréka, H. and Thompson, R.J., 1988, “A Stone-type representation theorem for algebras of relations of higher rank”,Trans. Amer. Math. Soc. 309(2), 671–682.Google Scholar
  10. van Benthem, J., 1994a, “A note on dynamic arrow logic”, inLogic and Information Flow, van J. Eijck and A. Visser, eds., MIT Press.Google Scholar
  11. van Benthem, J., 1994b, “Two essays on semantic modeling, the sources of complexity: content versus wrapping”, ILLC Technical Report X-94-01, University of Amsterdam.Google Scholar
  12. Bull, R. and Segerberg, H., 1984, “Basic modal logic”, pp. 1–88 inHandbook of Philosophical Logic, Vol. 2, D.M. Gabbay and F. Guenther, eds., Dordrecht: Reidel.Google Scholar
  13. Chang, C.C. and Keisler, H.J., 1990,Model Theory, Amsterdam: North-Holland.Google Scholar
  14. Csirmaz, L., Gabbay, D.M., and de Rijke, M., eds., 1995,Logic Colloquium'92, SILLI.Google Scholar
  15. Gabbay, D.M., 1981, “An irreflexivity lemma with applications to axiomatizations of conditions on linear frames”, pp. 91–117 inAspects of Philosophical Logic, U. Mönnich, ed., Dordrecht: Reidel.Google Scholar
  16. Gargov, G., Passy, S., and Tinchev, T., 1987, “Modal environment for Boolean speculations”, pp. 253–263 inMathematical Logic and its Applications, D. Skordev, ed., New York: Plenum Press.Google Scholar
  17. Henkin, L., Monk, J.D., and Tarski, A., 1985,Cylindric Algebras, Parts I, II, Amsterdam: North-Holland.Google Scholar
  18. van der Hoek, W., 1992, “Modalities for reasoning about knowledge and quantities”, Ph.D. dissertation, Free University Amsterdam.Google Scholar
  19. Hughes, G.E. and Creswell, M.J., 1984,A Companion to Modal Logic, London: Methuen.Google Scholar
  20. Koymans, R., 1989, “Specifying message passing and time-critical systems with temporal logic”, Ph.D. dissertation, Technical University Eindhoven.Google Scholar
  21. Maddux, R.D., 1982, “Some varieties containing relation algebras”,Trans. Amer. Math. Soc. 272, 501–526.Google Scholar
  22. Marx, M., 1992, “Dynamic arrow logic”, inProc. Logic at Work, CCSOM, University of Amsterdam; and inArrow Logic and Multimodal Logics, M. Marx and L. Pólos, eds., to appear.Google Scholar
  23. Marx, M., 1995, “Algebraic relativization and arrow logic”, Ph.D. dissertation, ILLC Dissertation Series 1995–3, University of Amsterdam.Google Scholar
  24. Marx, M., Mikulás, Sz., Németi, I., and Sain, I., 1992, “Investigations in arrow logic”, inProc. Logic at Work, CCSOM, University of Amsterdam; and inArrow Logic and Multimodal Logics, M. Marx and L. Pólos, eds., to appear.Google Scholar
  25. Marx, M., Mikulás, Sz., Németi, I., and Simon, A., 1994, “And now for something completely different: axiomatization of relativized representable relation algebras with the difference operator”, manuscript, Mathematical Institute, Budapest.Google Scholar
  26. Marx, M. and Pólos, L., 1995, eds.,Arrow Logic and Multimodal Logics, to appear.Google Scholar
  27. Marx, M. and Venema, Y.,Multidimensional Modal Logic, in preparation.Google Scholar
  28. Mikulás, Sz., 1992, “Complete calculus for conjugated arrow logic”, inProc. Logic at Work, CCSOM, University of Amsterdam; and inArrow Logic and Multimodal Logics, M. Marx and L. Pólos, eds., to appear.Google Scholar
  29. Mikulás, Sz., 1995a, “Taming first-order logic”, inProc. ACCOLADE'95, to appear.Google Scholar
  30. Mikulás, Sz., 1995b, “Taming logics”, Ph.D. dissertation, ILLC, University of Amsterdam, ILLC Dissertation Series, pp. 95–12.Google Scholar
  31. Mikulás, Sz., Németi, I., and Sain, I., 1995, “Decidable logics of the dynamic trend, and relativized relation algebras”, inLogic Colloquium'92, L. Csirmaz, D.M. Gabbay, and M. de Rijke, eds., SILLIGoogle Scholar
  32. Mönnich, U., ed., 1981,Aspects of Philosophical Logic, Dordrecht: Reidel.Google Scholar
  33. Németi, I., 1986, “Free algebras and decidability in algebraic logic”, Thesis for D.Sc. with the Hungarian Academy of Sciences, Budapest.Google Scholar
  34. Németi, I., 1987. “Decidability of relation algebras with weakened associativity”,Proc. of Am. Math. Soc. 100(2), 340–344.Google Scholar
  35. Németi, I., 1991, “Algebraizations of quantifier logics, an introductory overview”, drastically short-ened version:Studia Logica,50, 485–569, full version: Mathematical Institute, Budapest.Google Scholar
  36. Németi, I., 1992, “Decidability of weakened versions of first-order logic”, inProc. Logic at Work, CCSOM, University of Amsterdam; and inLogic Colloquium'92, L. Csirmaz, D.M. Gabbay, and M. de Rijke, eds., SILLI.Google Scholar
  37. De Rijke, M., 1993, “Extending modal logic”, Ph.D. dissertation, ILLC Dissertation Series 1993–4, University of Amsterdam.Google Scholar
  38. De Rijke, M. and Venema, Y, 1991, “Sahlqvist's theorem for Boolean algebras with operators”, ITLI Prepublication Series ML-91-10, University of Amsterdam; andStudia Logica, to appear.Google Scholar
  39. Sahlqvist, H., 1975, “Completeness and correspondence in the first order and second order semantics for modal logic”, inProc. of the Third Scandinavian Logic Symposium Uppsala 1973, S. Kanger, ed., Amsterdam: North-Holland.Google Scholar
  40. Sain, I., 1988, “Is ‘some-other-time’ sometimes better than ‘sometime’ in proving partial correctness of programs?”,Studia Logica XLVII(3), 279–301.Google Scholar
  41. Simon, A., 1992, “Arrow logic does not have deduction theorem”, inProc. Logic at Work, CCSOM, University of Amsterdam; and inArrow Logic and Multimodal Logics, M. Marx and L. Pólos, eds., to appear.Google Scholar
  42. Tarski, A. and Givant, S., 1987,A Formalisation of Set Theory without Variables, Providence, Rhode Island: AMS Colloquium Publications.Google Scholar
  43. Venema, Y., 1992a, “Many-dimensional Modal Logic”, Ph.D. dissertation, University of Amsterdam.Google Scholar
  44. Venema, Y, 1992b, “A crash course in arrow logic”, inProc. Logic at Work, CCSOM, University of Amsterdam; and inArrow Logic and Multimodal Logics, M. Marx and L. Pólos, eds., to appear.Google Scholar
  45. Venema, Y, 1995, “Cylindric modal logic”,Journal of Symbolic Logic, to appear.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Maarten Marx
    • 1
  • Szabolcs Mikul
    • 2
  • István Németi
    • 3
  1. 1.Center for Computer Science in Organization and ManagementUniversity of AmsterdamGC, AmsterdamThe Netherlands
  2. 2.Department of Mathematics and ComputationUniversity of AmsterdamTV, AmsterdamThe Netherlands
  3. 3.Mathematical Institute of the Hungarian Academy of ScienceBudapestHungary

Personalised recommendations