Glycoconjugate Journal

, Volume 2, Issue 3–4, pp 209–228 | Cite as

Structures of the carbohydrate units of polysialoglycoproteins isolated from the eggs of four species of salmonid fishes

  • Mariko Iwasaki
  • Sadako Inoue


Fish egg polysialoglycoprotein (PSGP) is a novel type of 200 kDa-glycoprotein containing more than 50% sialic acid by weight and about 90O-glycosidically-linked sialoglycan units per molecule. Of about 100 different molecular species assumed to be present in a sialoglycan mixture obtained by alkaline borohydride treatment ofSalvelinus leucomaenis pluvius PSGP, 23 mono- to tetrasialylglycans were isolated by anion-exchange chromatography and preparative column chromatography on porous silica, and their structures were determined. Core asialo-oligosaccharides were obtained from PSGP of four species of salmonid fishes by exhaustive enzymatic desialylation of sialoglycan mixtures and the structures of purified compounds were determined. Two complete types of asialopentasaccharide core structures, Fucα1-3GalNAcβ1-3Galβ1-4 Galβ1-3GalNAcOL, and GalNAcβ1-4GalNAcβ1-3Galβ1-4Galβ1-3GalNAcOL, and all of the possible biosynthetic precursors of these pentasaccharide cores were found in every PSGP examined. All types of oligosaccharide chains, both complete and incomplete, were found to occur in highly sialylated forms in PSGP.

Key words

polysialoglycoprotein oligosialyl O-linked glycans oligosaccharide fractionation 



N-acetylneuraminic acid


N-glycolylneuraminic acid






sialidase-resistant oligosaccharide


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Inoue S, Iwasaki M (1978) Biochem Biophys Res Commun 83:1018–23.Google Scholar
  2. 2.
    Inoue S, Iwasaki M (1980) Biochem Biophys Res Commun 93:162–65.Google Scholar
  3. 3.
    Inoue S, Iwasaki M, Matsumura G (1983) in Proc 7th Int Symp Glycoconjugates, eds. Chester MA, Heinegård D, Lundblad A, Svensson S, Secretariat, Lund, p 205–6.Google Scholar
  4. 4.
    Nomoto H, Iwasaki M, Endo T, Inoue S, Inoue Y, Matsumura G (1982) Arch Biochem Biophys 218:335–41.Google Scholar
  5. 5.
    Iwasaki M, Inoue S, Kitajima K, Nomoto H, Inoue Y (1984) Biochemistry 23:305–10.Google Scholar
  6. 6.
    Shimamura M, Endo T, Inoue Y, Inoue S, Kambara H (1984) Biochemistry 23: 317–22.Google Scholar
  7. 7.
    Iwasaki M, Nomoto H, Kitajima K, Inoue S, Inoue Y (1984) Biochem Int 8: 573–79.Google Scholar
  8. 8.
    Kitajima K, Nomoto H, Inoue Y, Iwasaki M, Inoue S (1984) Biochemistry 23: 310–16.Google Scholar
  9. 9.
    Shimamura M, Endo T, Inoue Y, Inoue S (1983) Biochemistry 22:959–63.Google Scholar
  10. 10.
    Schauer R (1978) Meth Enzymol 50:64–89.Google Scholar
  11. 11.
    Svennerholm L (1963) Meth Enzymol 6:459–62.Google Scholar
  12. 12.
    Uchida Y, Tsukada Y, Sugimori T (1977) J Biochem (Tokyo) 82:1425–33.Google Scholar
  13. 13.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Anal Chem 28: 350–56.Google Scholar
  14. 14.
    Yu RK, Ledeen RW (1970) J Lipid Res 11:506–16.Google Scholar
  15. 15.
    Ciucanu I, Kerek F (1984) Carbohydr Res 131:209–17.Google Scholar
  16. 16.
    Uda Y, Itoh T (1983) J Biochem (Tokyo) 93:847–55.Google Scholar
  17. 17.
    Ando S, Isobe M, Nagai Y (1976) Biochim Biophys Acta 424:98–105.Google Scholar
  18. 18.
    Momoi T, Ando S, Nagai Y (1976) Biochim Biophys Acta 441:488–97.Google Scholar

Copyright information

© Glycoconjugate Journal 1985

Authors and Affiliations

  • Mariko Iwasaki
    • 1
  • Sadako Inoue
    • 1
  1. 1.School of Pharmaceutical SciencesShowa UniversityTokyoJapan

Personalised recommendations