Advertisement

Journal of Philosophical Logic

, Volume 22, Issue 1, pp 29–60 | Cite as

On the logic of informational independence and its applications

  • Gabriel Sandu
Article

Abstract

We shall introduce in this paper a language whose formulas will be interpreted by games of imperfect information. Such games will be defined in the same way as the games for first-order formulas except that the players do not have complete information of the earlier course of the game. Some simple logical properties of these games will be stated together with the relation of such games of imperfect information to higher-order logic. Finally, a set of applications will be outlined.

Keywords

Complete Information Logical Property Imperfect Information Informational Independence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barwise, J., 1979, ‘On Branching Quantifiers in English’,Journal of Philosophical Logic 8, pp. 47–80.Google Scholar
  2. Barwise, J. and Feferman, S. (eds.),Model-Theoretic Logics, Springer, Berlin, 1985.Google Scholar
  3. Enderton, H. B., 1970, ‘Finie Partially Ordered Quantifiers’, inZeitschrift für Mathematische Logik und Grundlagen der Mathematik 16, pp. 393–397.Google Scholar
  4. Henkin, L., 1961, ‘Some Remarks on Infinitely Long Formulas’, inInfinitistic Methods: Proceedings of the Symposium on the Foundations of Mathematics (Warsaw, 2–9 September, 1959), Pergamon Press, New York, pp. 167–183.Google Scholar
  5. Hintikka, J., 1974, ‘Quantifiers vs. Quantification Theory’,Linguistic Inquiry 5, pp. 153–177.Google Scholar
  6. Hintikka, J., 1979, ‘Quantifiers in Natural Languages: Some Logical Problems I’, in I. Niiniluoto and E. E. Saarinen (eds.),Essays on Mathematical and Philosophical Logic, D, Reidel, Dordrecht, pp. 295–314.Google Scholar
  7. Hintikka, J. and Kulas, J. 1983,The Game of Language, D. Reidel Publishing Company, Dordrecht, Holland.Google Scholar
  8. Hintikka, J. and Kulas, J. 1985,Anaphora and Definite Descriptions. Two Applications of Game-Theoretical Semantics, D. Reidel Publishing Company, Dordrecht, Holland.Google Scholar
  9. Hintikka, J. and Sandu, G., 1989, ‘Informational Independence as a Semantical Phenomenon’, in J. E. Fenstadet al. (eds.),Logic, Methodology and Philosophy of Science, Vol. III, Elsevier Science Publishers, B.V., pp. 571–589.Google Scholar
  10. Kolaitis, G., 1986, ‘Game Quantification’, in Barwise, K. J. and Feferman, S.,Model-Theoretical Logics, Berlin, Springer-Verlag.Google Scholar
  11. M. Krynicki and Lachan, A. 1979, ‘On the Semantics of the Henkin Quantifier’,JSL 44, pp. 184–200.Google Scholar
  12. Neale, S., 1990, ‘Descriptive Pronouns and Donkey Anaphora’,The Journal of Philosophy 3, pp. 115–150.Google Scholar
  13. Neale, S. (forthcoming),Descriptions, MIT, Cambridge.Google Scholar
  14. Sandu, G. and Väänänen, J. (forthcoming), ‘Partially Ordered Connectives.Google Scholar
  15. Seuren, P. A. M., 1974, ‘Negative's Travels’, in P. M. A. Seuren,Semantic Syntax, Oxford University Press, pp. 183–208.Google Scholar
  16. Stockwell, 1973, in R. P. P. Schachter and B. H. Partee,The Major Syntactic Structures of English, Holt, Rinehart and Winston, New York.Google Scholar
  17. von Neumann, J. and Morgenstern, O., 1944,Theory of Games and Economic Behavior, Princeton University Press, Princeton.Google Scholar
  18. Walkoe, W. Jr., 1970, ‘Finite Partially Ordered Quantifiers’, inJournal of Symbolic Logic 35, pp. 535–555.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Gabriel Sandu
    • 1
  1. 1.Department of PhilosophyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations