Advertisement

Journal of Statistical Physics

, Volume 68, Issue 5–6, pp 895–910 | Cite as

Time-dependent thermodynamic properties of the Ising model from damage spreading

  • Sharon C. Glotzer
  • Peter H. Poole
  • Naeem Jan
Articles

Abstract

The relationship between damage spreading and static thermodynamic properties in the Ising model developed by Coniglioet al. is here extended to include time-dependent thermodynamic quantities. We exploit this new result to measure the time-dependent spin correlation function from damage spreading in the Ising model with heat bath and Glauber dynamics. Until now, only static thermodynamic quantities have been correctly determined from damage spreading, and even then, only with heat bath dynamics. We also show that there are significant differences between the kinetics of damage spreading as found in heat bath and Glauber dynamics.

Key words

Ising problems dynamics damage spreading 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Kaufmann,J. Theor. Biol. 22:437 (1969);Sci. Am. (1991).Google Scholar
  2. 2.
    D. Stauffer,Phil. Mag. B 56:901 (1987).Google Scholar
  3. 3.
    S. C. Glotzer, D. Stauffer, and S. Sastry,Physica A 164:1 (1990).Google Scholar
  4. 4.
    U. M. S. Costa,J. Phys. A: Math. Gen. 20:L583 (1987).Google Scholar
  5. 5.
    H. E. Stanley, D. Stauffer, J. Kertesz, and H. J. Herrmann,Phys. Rev. Lett. 59:2326 (1987).Google Scholar
  6. 6.
    G. Le Caer,J. Phys. A 22:L647 (1989);Physica A 159:329 (1989).Google Scholar
  7. 7.
    B. Derrida and G. Weisbuch,Europhys. Lett. 4:657 (1987).Google Scholar
  8. 8.
    A. Coniglio, L. de Arcangelis, H. J. Herrmann, and N. Jan,Europhys. Lett. 8:315 (1989).Google Scholar
  9. 9.
    L. de Arcangelis, H. J. Herrmann, and A. Coniglio,J. Phys. A: Math. Gen. 23:L265 (1990).Google Scholar
  10. 10.
    A. U. Neumann and B. Derrida,J. Phys. (Paris)49:1647 (1988).Google Scholar
  11. 11.
    L. de Arcangelis, A. Coniglio, and H. J. Herrmann,Europhys. Lett. 9:749 (1989).Google Scholar
  12. 12.
    A. Coninglio, inCorrelations and Connectivity, H. E. Stanley and N. Ostrowsky, eds. (Kluwer, Dordrecht, 1990).Google Scholar
  13. 13.
    H. R. da Cruz, U. M. S. Costa, and E. M. F. Curado,J. Phys. A: Math. Gen. 22:L651 (1989).Google Scholar
  14. 14.
    A. M. Mariz, H. J. Herrmann, and L. de Arcangelis,J. Stat. Phys. 59:1043 (1990).Google Scholar
  15. 15.
    D. Stauffer,Physica A 162:27 (1990).Google Scholar
  16. 16.
    A. M. Mariz and H. J. Herrmann,J. Phys. A: Math. Gen. 22:L1081 (1989).Google Scholar
  17. 17.
    O. Golinelli and B. Derrida,J. Phys. (Paris)49:663 (1988).Google Scholar
  18. 18.
    S. S. Manna,J. Phys. (Paris)51:261 (1990).Google Scholar
  19. 19.
    M. N. Barber and B. Derrida,J. Stat. Phys. 51:877 (1988).Google Scholar
  20. 20.
    H. O. Heuer,Phys. World 1992 (January):23; and preprints.Google Scholar
  21. 21.
    P. H. Poole and N. Jan,J. Phys. A: Math. Gen. 23:L453 (1990).Google Scholar
  22. 22.
    S. C. Glotzer and N. Jan,Physica A 173:325 (1991).Google Scholar
  23. 23.
    H. J. Herrmann, inThe Monte Carlo Method in Condensed Matter Physics, K. Binder, ed. (Springer-Verlag, Berlin, 1991).Google Scholar
  24. 24.
    J. D. Reger, private communication.Google Scholar
  25. 25.
    N. Jan and D. L. Hunter, private communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Sharon C. Glotzer
    • 1
  • Peter H. Poole
    • 1
  • Naeem Jan
    • 2
  1. 1.Center for Polymer Studies and Physics DepartmentBoston UniversityBoston
  2. 2.Physics DepartmentSt. Francis Xavier UniversityAntigonishCanada

Personalised recommendations