Journal of Statistical Physics

, Volume 68, Issue 5–6, pp 829–882 | Cite as

Phenomenology of nonlocal cellular automata

  • Wentian Li


Dynamical systems with nonlocal connections have potential applications to economic and biological systems. This paper studies the dynamics of nonlocal cellular automata. In particular, all two-state, three-input nonlocal cellular automata are classified according to the dynamical behavior starting from random initial configurations and random wirings, although it is observed that sometimes a rule can have different dynamical behaviors with different wirings. The nonlocal cellular automata rule space is studied using a mean-field parametrization which is ideal for the situation of random wiring. Nonlocal cellular automata can be considered as computers carrying out computation at the level of each component. Their computational abilities are studied from the point of view of whether they contain many basic logical gates. In particular, I ask the question of whether a three-input cellular automaton rule contains the three fundamental logical gates: two-input rules AND and OR, and one-input rule NOT. A particularly interesting “edge-of-chaos” nonlocal cellular automaton, the rule 184, is studied in detail. It is a system of coupled “selectors” or “multiplexers.” It is also part of the Fredkin's gate—a proposed fundamental gate for conservative computations. This rule exhibits irregular fluctuations of density, large coherent structures, and long transient times.

Key words

Nonlocal cellular automata automata networks classification of cellular automata cellular automata rule space critical hypersurface self-organized criticality mean-field theory universal computation “game of life” Fredkin's gate coupled selectors or coupled multiplexers edge-of-chaos dynamics density fluctuations long transient behaviors cooperative dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of 1/f noise,Phys. Rev. Lett. 59:381–384 (1987).Google Scholar
  2. 2.
    E. Berlekamp, J. Conway, and R. Guy,Winning Ways for Your Mathematical Plays, Vol. 2 (Academic Press, 1984).Google Scholar
  3. 3.
    T. Bohr, G. Grinstein, Y. He, and C. Jayaprakash, Coherence, chaos, and broken symmetry in classical, many-body dynamical systems,Phys. Rev. Lett. 58(21):2155–2158 (1987).Google Scholar
  4. 4.
    T. Bohr and O. B. Christensen, Size dependence, coherence, and scaling in turbulent coupled-map lattices,Phys. Rev. Lett. 63(20):2161–2164 (1989).Google Scholar
  5. 5.
    J. Carlson, J. Chayes, E. Grannan, and G. Swindle, Self-organized criticality in sandpiles: Nature of the critical phenomenon,Phys. Rev. A 42(4):2467–2470 (1990).Google Scholar
  6. 6.
    H. Chaté and P. Manneville, Collective behaviors in spatially extended systems with local interactions and synchromous updating,Prog. in Theor. Phys. 87:1–60 (1992).Google Scholar
  7. 7.
    A. Chhabra, M. Feigenbaum, L. Kadanoff, A. Kolan, and I. Procaccia, Sandpiles, avalanches, and the statistical mechanics of non-equilibrium stationary states, preprint (1992).Google Scholar
  8. 8.
    E. F. Codd,Cellular Automata (Academic Press, New York, 1968).Google Scholar
  9. 9.
    J. P. Crutchfield and K. Kaneko, Phenomenology of spatio-temporal chaos, inDirections in Chaos, Bailin Hao, ed. (World Scientific, Singapore, 1987).Google Scholar
  10. 10.
    J. P. Crutchfield and K. Kaneko, Are attractors relevant to turbulence?Phys. Rev. Lett. 60(26):2715–2718 (1988).Google Scholar
  11. 11.
    J. P. Crutchfield, Hunting for transients and cycles, unpublished notes (March 1988).Google Scholar
  12. 12.
    J. P. Crutchfield, Subbasins, portals, and mazes: Transients in high dimensions,Nucl. Phys. B (Proc. Suppl.) 5A:287–292 (1988).Google Scholar
  13. 13.
    F. Fogelman-Soulié, Parallel and sequential computation on Boolean networks,Theor. Computer Sci. 40:275–300 (1985).Google Scholar
  14. 14.
    E. Fredkin and T. Toffoli, Conservative logic,Int. J. Theor. Phys. 21(3/4):219–253 (1982).Google Scholar
  15. 15.
    P. Gacs, G. L. Kurdyumov, and L. A. Levin, One-dimensional uniform arrays that wash out finite islands,Prob. Peredachi. Inf. 14:92–98 (1978).Google Scholar
  16. 16.
    J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, 1983).Google Scholar
  17. 17.
    H. Gutowitz, J. Victor, and B. Knight, Local structure theory for cellular automata,Physica D 28:18–48 (1987).Google Scholar
  18. 18.
    H. Gutowitz, Hierarchical classification of cellular automata,Physica D 45(1–3):136–156 (1990).Google Scholar
  19. 19.
    G. Grinstein, Stability of nonstationary states of classical, many-body dynamical systems,J. Stat. Phys. 5(5/6):803–815 (1988).Google Scholar
  20. 20.
    E. Jen, Global properties of cellular automata,J. Stat. Phys. 43(1/2):219–242 (1986); Invariant strings and pattern-recognizing properties of one-dimensional cellular automata,J. Stat. Phys. 43(1/2):243–265 (1986).Google Scholar
  21. 21.
    K. Kaneko, Lyapunov analysis and information flow in coupled map lattices,Physica D 23:436–447 (1986).Google Scholar
  22. 22.
    K. Kaneko, Chaotic but regular posi-nega switch among coded attractors by cluster-size variation,Phys. Rev. Lett. 63(3):219–223 (1989).Google Scholar
  23. 23.
    K. Kaneko, Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements,Physica D 41:137–172 (1990).Google Scholar
  24. 24.
    K. Kaneko, Super-transients, spatio-temporal intermittency and stability of fully developed spatio-temporal chaos,Phys. Lett. A 149(2, 3):105–112 (1990).Google Scholar
  25. 25.
    F. Kaspar and H. G. Schuster, Scaling at the onset of spatial disorder in coupled piecewise linear map,Phys. Lett. A 113:451–453 (1986).Google Scholar
  26. 26.
    S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets,J. Theor. Biol. 22:437–167 (1969).Google Scholar
  27. 27.
    S. A. Kauffman, Emergent properties in randomly complex automata,Physica D 10:145–156 (1984).Google Scholar
  28. 28.
    D. E. Knuth,The Art of Computer Programming, Vol. 2:Seminumerical Algorithms (Addison-Wesley, 1981).Google Scholar
  29. 29.
    J. Krug, J. Socolar, and G. Grinstein, Surface fluctuations and criticality in a class of 1d sandpile models, preprint (1992).Google Scholar
  30. 30.
    C. Langton, Studying artificial life with cellular automata,Physica D 22(1–3):120–149 (1986).Google Scholar
  31. 31.
    C. Langton, Computation at the edge of chaos: Phase transitions and emergent computation,Physica D 42:12–37 (1990).Google Scholar
  32. 32.
    C. Langton, Computation at the Edge of Chaos, Ph.D. Thesis, University of Michigan (1990).Google Scholar
  33. 33.
    W. Li, Power spectra of regular languages and cellular automata,Complex Systems 1(1):107–130 (1987).Google Scholar
  34. 34.
    W. Li, Complex patterns generated by next nearest neighbors cellular automata,Computer Graphics 13(4):531–537 (1989).Google Scholar
  35. 35.
    W. Li, Problems in Complex Systems, Ph.D. Thesis, Columbia University, New York (1989) (Available from University Microfilm International, Ann Arbor, Michigan).Google Scholar
  36. 36.
    W. Li and N. Packard, Structure of the elementary cellular automata rule space,Complex Systems 4(3):281–297 (1990).Google Scholar
  37. 37.
    W. Li, N. Packard, and C. Langton, Transition phenomena in cellular automata rule space,Physica D 45(1–3):77–94 (1990).Google Scholar
  38. 38.
    W. Li and M. Nordahl, Transient behavior of cellular automaton rule 110,Phys. Lett. A, to appear (1992).Google Scholar
  39. 39.
    W. Li, Parametrizations of cellular automata rule space, in preparation.Google Scholar
  40. 40.
    W. Li, Group meeting problems, in preparation.Google Scholar
  41. 41.
    W. Li, Dynamical behavior of coupled selectors, in preparation.Google Scholar
  42. 42.
    K. Lindgren and M. Nordahl, Universal computation in simple one-dimensional cellular automata,Complex Systems 4(3):299–318 (1990).Google Scholar
  43. 43.
    B. D. Lubachesky, Efficient parallel simulations of asynchronous cellular arrays,Complex Systems 1(6):1099–1123 (1987).Google Scholar
  44. 44.
    J. L. Marroquín and A. Ramírez, Stochastic cellular automata with Gibbsian invariant measures,IEEE Trans. Information Theory 37(3):541–551 (1991).Google Scholar
  45. 45.
    P. C. Matthews and S. H. Strogatz, Phase diagram for the collective behavior of limitingcycle oscillators,Phys. Rev. Lett. 65:1701–1704 (1990).Google Scholar
  46. 46.
    R. May, Simple mathematical models with very complicated dynamics,Nature 261:459–467 (1976).Google Scholar
  47. 47.
    N. Packard, Complexity of growing patterns in cellular automata, inDynamical Systems and Cellular Automata, J. Demongeot, E. Goles, and M. Techuente, eds. (Academic Press, 1985).Google Scholar
  48. 48.
    N. Packard, Adaptation toward the edge of chaos, inComplexity in Biological Modeling, S. Kelso and M. Shlesinger, eds. (World Scientific, Singapore, 1988).Google Scholar
  49. 49.
    P. Peretto and J.-J. Niez, Stochastic dynamics of neural networks,IEEE Trans. Systems, Man, Cybernet. 16(1):73–83 (1986).Google Scholar
  50. 50.
    C. Prado and Z. Olam, Inertia and break of self-organized criticality in sandpile cellularautomata model,Phys. Rev. A 45(2):665–669 (1992).Google Scholar
  51. 51.
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes in C (Cambridge University Press, Cambridge, 1988).Google Scholar
  52. 52.
    D. R. Rasmussen and T. Bohr, Temporal chaos and spatial disorder,Phys. Lett. A 125(2, 3):107–110 (1987).Google Scholar
  53. 53.
    L. S. Schulman and P. E. Seiden, Statistical mechanics of a dynamical system based on Conway's Game of Life,J. Stat. Phys. 19:293–314 (1978).Google Scholar
  54. 54.
    R. Shaw,The Dripping Faucet as a Model Chaotic System (Aerial Press, 1984).Google Scholar
  55. 55.
    R. J. Smith,Circuits, Devices, and Systems — A First Course in Electrical Engineering (Wiley, 1966, 1984).Google Scholar
  56. 56.
    J. Theiler, Mean field analysis of systems that exhibit self-organized criticality, Center for Nonlinear Studies preprint, Los Alamos National Lab (1991).Google Scholar
  57. 57.
    J. Theiler, private communication.Google Scholar
  58. 58.
    T. Toffoli and N. Margolus,Cellular Automata Machine—A New Environment for Modeling (MIT Press, 1987).Google Scholar
  59. 59.
    K. Tsang, R. Mirollo, S. Strogatz, and K. Wiesenfeld, Dynamics of a globally coupled oscillator array,Physica D 48:102–112 (1991).Google Scholar
  60. 60.
    D. K. Umberger, C. Grebogi, E. Ott, and B. Afeyan, Spatiotemporal dynamics in a dispersively coupled chain of nonlinear oscillators,Phys. Rev. A 39:4835–4842 (1989).Google Scholar
  61. 61.
    J. von Neumann,Theory of Self-Reproducing Automata, A. W. Burks, ed. (University of Illinois Press, 1966).Google Scholar
  62. 62.
    G. Y. Vichniac, P. Tamayo, and H. Hartman, Annealed and quenched inhomogeneous cellular automata (ICA),J. Stat. Phys. 45(5/6):875–883 (1986).Google Scholar
  63. 63.
    C. C. Walker and W. R. Ashby, On temporal characteristics of behavior in a class of complex systems,Kybernetik 3:100–108 (1966).Google Scholar
  64. 64.
    C. C. Walker, Behavior of a class of complex systems: The effect of system size on properties of terminal cycles,J. Cybernet. 1(4):57–67 (1971).Google Scholar
  65. 65.
    C. C. Walker, Predictability of transient and steady-state behavior in a class of complex binary sets,IEEE Trans. Systems, Man, Cybernet. 3(4):433–436 (1973).Google Scholar
  66. 66.
    C. C. Walker, Stability of equilibrial states and limit cycles in sparsely connected, structurally complex Boolean nets,Complex Systems 1(6):1063–1086 (1987).Google Scholar
  67. 67.
    C. C. Walker, Attractor dominance patterns is sparsely connected Boolean nets,Physica D 45(1–3):441–451 (1990).Google Scholar
  68. 68.
    G. Weisbuch,Complex Systems Dynamics (Addison-Wesley, 1991).Google Scholar
  69. 69.
    K. Wiesenfeld and P. Hadley, Attractor crowding in oscillator arrays,Phys. Rev. Lett. 62:1335–1338 (1989).Google Scholar
  70. 70.
    W. Wilbur, D. Lipman, and S. Shamma, On the prediction of local patterns in cellular automata,Physica D 19:397–410 (1986).Google Scholar
  71. 71.
    S. Wolfram, Statistical mechanics of cellular automata,Rev. Mod. Phys. 55:601–644 (1983).Google Scholar
  72. 72.
    S. Wolfram, Universality and complexity in cellular automata,Physica D 10:1–35 (1984).Google Scholar
  73. 73.
    S. Wolfram, Computation theory of cellular automata,Commun. Math. Phys. 96:15–57 (1984).Google Scholar
  74. 74.
    S. Wolfram, Twenty problems in the theory of cellular automata,Physica Scripta T9:170–183 (1985).Google Scholar
  75. 75.
    Appendix: Properties of thek=2r=1 cellular automata, inTheory and Applications of Cellular Automata, S. Wolfram, ed. (World Scientific, Singapore, 1986).Google Scholar
  76. 76.
    W. Wootters and C. G. Langton, Is there a sharp phase transition for deterministic cellular automata?Physica D 45(1–3):95–104 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Wentian Li
    • 1
  1. 1.Santa Fe InstituteSanta Fe

Personalised recommendations