Fertilizer research

, Volume 26, Issue 1–3, pp 253–269 | Cite as

Share of agriculture in nitrogen and phosphorus emissions into the surface waters of Western Europe against the background of their eutrophication

  • K. Isermann


Dissolved inorganic nitrogen and phosphorus, their relationship to each other (DIN/DIP) as predisposing (nutrient) factors, as well as prevailing weather as a triggering factor all work together to induce the primary production and hence the eutrophication (hypertrophication) process in surface waters. Sulfate likewise is a decisive predisposing factor influencing the eutrophication process by reducing N availability but increasing P availability and thus acting towards an N limitation of the primary production. This is one of the reasons why marine (coastal) waters and estuaries often exhibit N limitation with respect to primary production, while freshwater ecosystems often tend to exhibit P limitation.

Within the N and P balance of agriculture of some countries of Western Europe (Netherlands, Denmark, Switzerland, FRG, UK and Sweden for N, resp. Netherlands, FRG and GDR for P) more the level than the efficiency of the N and P applications indicates the extent of the nutrient surplus. Despite 59–73% N utilization in plant production, the rate of 13–23% for agriculture as a whole equals to the 12–21% efficiency of N use in animal production. The varying N surplus in agriculture in the separate countries of 124 to 465 kg N ha−1 a−1 is determined almost exclusively by the level of the N application and not by its efficiency. The situation is similar for P: In spite of P utilization in plant production of 59–76%, P utilization in total agriculture is only 11–38%, or comparable to the P efficiency within animal production of 10–34%. The differing P excess balance of 55 to 88 kg P2O5 ha−1 a−1 is influenced by the level of the P application. The N and P efficacy of total agriculture hence is determined almost completely by that of animal production, since 83–95% (N basis) and 76–94% (P basis) of the total plant production (on top of the nationally varying levels of N and P use via imported feeds) are fed to animals — with the low N and P utilization cited above.

Agriculture's share of the N and P emissions into surface water of several countries/regions in Western Europe (FRG, Netherlands, Italy, Denmark, Switzerland, Norway) ranges from 37 to 82% resp. 27 to 38%. Its share in the flus into the North Sea catchment basin will be about 60% for N and 25% for P related only to the anthropogenic material carried by the rivers. Agriculture's share in the atmospheric N emissions into the North and Baltic Seas can be estimated at about 65% or 55%, resp. while the remaining approx. 35% or 45%, resp. are traceable primarily to anthropogenic burning processes.

For agriculture the priority lies in limiting N emissions into surface water caused by leaching, erosion and NH3 emissions, and reducing P emissions mainly through soil conservation (protection against erosion) and water protection. As regards N this means a demand for comprehensive protection of groundwater and atmosphere differentiated according to the potential for losses or the risk of losses on a site, also outside the protection zones. As regards P only those areas can be included in the demand for reduction of emissions that are actually threatened by erosion or surface runoff. Plenty of short-term and long-term measures are available to agriculture to reduce N and P emissions. Especially the long-range measures (such as creating nutrient balances on farms and fields, the integration of animal and plant production, maintaining maximum livestock densities according to the ability of areas to absorb nutrients, altered feeding programs in animal nutrition, changes in livestock keeping (slurry→deep litter), increasing the internal and external recycling of N and P) are capable of bringing about a satisfactory degree of success within the next 20 to 30 years.

Key words

Nitrogen phosphorus sulphur nutrient balances surface waters North Sea Baltic Sea eutrophication hypertrophication primary production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackefors H and Enell M (1990) Discharge of nutrients from Swedish fish farming to adjacent sea areas. Ambio 19/1: 28–35Google Scholar
  2. 2.
    Adam F (1989) Nährstoffe — Frachtanteile Abwasser/Landwirtschaft und Maßnahmen zu deren Reduktion. Pro Aqua — pro Vita 1989. 11 Fachmesse und Fachtagungen für Umweltanalytik und Umweltschutz Basel, 6–9 Juni 1989. Band/Volume 11B: 3.1–3.33Google Scholar
  3. 3.
    Asman WAH and Janssen AJ (1987) A long range transport model for ammonia for Europe. In: Proc Ammonia and acidification. Eurasap-Symposium, Bilthoven 13–15 April 1987: 211–222Google Scholar
  4. 4.
    AG ‘Fließgewässer’ (1990) Siehe Auerswald et al. 1990 sowie GDCh-AGGoogle Scholar
  5. 5.
    Auerswald K (1989) Prognose des P-Eintrages durch Bodenerosion in die Oberflächengewässer der BRD. Mittlg Dtsch Bodenkundl Gesellsch 59: 661–664Google Scholar
  6. 6.
    Auerswald K, Isermann K, Olfs HW and Werner W (1990) Stickstoff und Phosphoreintrag in Fließgewässer über ‘diffuse Quellen’. In: HA ‘Phosphate und Wasser’ in der Fachgruppe Wasserchemie in der GDCh (Hrsg.): ‘Wirkungsstudie Fließgewässer’Google Scholar
  7. 7.
    Bartnicki J and Alcamo J (1989) Calculating nitrogen deposition in Europe. Water, Air and Soil Pollution 47: 101–123Google Scholar
  8. 8.
    Berbee RPM (1987) Pollution of surface water in the Netherlands by non-point sources. 5th International Symposium of CIEC Balatonfüred (Hungary) 1–4 September 1987. Symposium Document Vol 3 Section 2: 3–7Google Scholar
  9. 9.
    Boberfeld O von (1989) Milchquoten-Grundfuttererzeugung. Sonderdruck aus: Ergebnisse landwirtschaftlicher Forschung, Heft XIX, GießenGoogle Scholar
  10. 10.
    Boynton WR, Kemp WM and Keefe CW: A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. In Estuarine Comparisons, ed V.S. Kennedy: 69–90, New York: Academic PressGoogle Scholar
  11. 11.
    Buijsman E, Maas HF and Asman WAH (1987) Anthropogenic NH3 emissions in Europe. Atmospheric Environment Vol 21/5: 1009–1022Google Scholar
  12. 12.
    Bundesrat (1989) Mittl. an die Presse ‘EG-Gesamtkonzept gegen Gewässerverunreinigung verlangt’. Mittl der Pressestelle des Bundesrates vom 12. MaiGoogle Scholar
  13. 13.
    Caraco NF, Cole JJ and Likens GE (1989) Evidence for sulphate controlled phosphorus release from sediments of aquatic systems. Nature 341: 316–318Google Scholar
  14. 14.
    EC Directive: Proposal for a council directive concerning the protection of fresh, coastal and marine waters against pollution by nitrates from diffuse sources (COM (88) 708 Final)Google Scholar
  15. 15.
    Franz P and Salewski A (1989) Weniger Stickstoff in der Gülle. Rheinische Bauernzeitung 38: 15–16Google Scholar
  16. 16.
    Gaggino GF, Blundo CM, Primazzi G and Prorini A (1986) Fosforo Totale, Azote ammoniacale — nitroso e nitrico. In: Criteri e limiti per il controlle dell' inquinamento delle aqua: 10 anni die esperienza, Atti Convegno IRSA 26–27 giugnoGoogle Scholar
  17. 17.
    Gerlach SA (1987) Nutrients — An overview. International Conference on Environmental Protection of the North Sea. London 24–27 March 1987. Final Draft: 1–28Google Scholar
  18. 18.
    Gerlach SA (1989) Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit. Abschlußbericht über das Teilvorhaben 9. Koordination im Rahmen des Themas ‘Eutrophierung der Nord- und Ostsee’, Forschungsvorhaben Wasser 102 04 215. Stickstoff, Phosphor, Plankton und Sauerstoffmangel in der Deutschen Bucht und in der Kieler Bucht. KielGoogle Scholar
  19. 19.
    Harenz H (1989a) Probleme der Schließung des Phosphorkreislaufs. Nachrichten Mensch — Umwelt 3: 23–52Google Scholar
  20. 20.
    Harenz H (1989b) Phosphor-Kreislauf und Verluste. Spectrum Chemie 20: 14–16Google Scholar
  21. 21.
    Howarth RW (1988) Nutrient limitation of net primary production in marine ecoystems. Ann Rev Ecol 19: 89–110Google Scholar
  22. 22.
    Howarth RW and Cole JJ (1985): Molybdenum availability, nitrogen limitation and phytoplankton growth in natural waters. Science 229: 653–655Google Scholar
  23. 23.
    Hydes DJ and Edmunds H (1989) NERC North Sea Community research programme qualitative assessment of nutrient measurements September 1988 to August 1989. Preliminary report to the Department of the environment. Report No 269Google Scholar
  24. 24.
    Hydrogeologische Kartierung und Grundwasserbewirtschaftung Rhein-Neckar-Raum (1987) Situation heute — Möglichkeiten und Grenzen künftiger Entwicklungen. Stuttgart — Wiesbaden — Mainz Hrsg.: Ministerium für Umwelt Baden-Württemberg. Der Hessische Minister für Umwelt und Reaktorsicherheit. Ministerium für Umwelt und Gesundheit Rheinland-PfalzGoogle Scholar
  25. 25.
    Isermann K (1987) Environmental aspects of fertilizer application. In: Ullmann's Encyclopedia of Industrial Chemistry Vol A 10: 400–431Google Scholar
  26. 26.
    Isermann K (1988): Tiefenuntersuchungen des Bodens und des (un-) gesättigten Untergrundes hinsichtlich der ‘erweiterten Nitratproblematik’ des Grundwassers bei unterschiedlicher Landbewirtschaftung. Mittlg Dtsch Bodenkundl Gesellsch 57: 181–186Google Scholar
  27. 27.
    Isermann K (1989) Mögliche Zielsetzungen der Arbeitsgruppe ‘Unge sättigte Zone’ der DBG und deren Einbindung in bereits bestehende Bodenschutzarbeitskreise. Grünes Mitteilungsblatt der Dtsch Bodenkundlichen Gesellschaft 1989: 33–37Google Scholar
  28. 28.
    Isermann K and Henjes G (1990) Dissimilatorische Nitrat-Reduktion im (un-) gesättigten Untergrund bei unterschiedlicher Landbewirtschaftung. Vortrag 101. VDLUFA-Kongreß, 18–23. September 1989 in Bayreuth (in print Kongreßband)Google Scholar
  29. 29.
    Isermann K (1990) This paperGoogle Scholar
  30. 30.
    Isermann K (1989) N- and P-balances in the agriculture of the Netherlands (unpublished)Google Scholar
  31. 31.
    Isermann K (1989) P-balance in the agriculture of the Federal Republic of Germany. In: Sturm H and Isermann K (1989): measures to reduce phosphate emission into surface water — consequences for P2O5 fertilizer consumption. IFA/IMPHOS seminar about the role of phosphates in balanced fertilization: Marrakech, Marocco, 24–27 October 1989 (in print)Google Scholar
  32. 32.
    Isermann K (1990) Die Stickstoff- and Phosphor-Einträge in die Oberflächengewässer der Bundesrepublik Deutschlannd durch verschiedene Wirtschaftsbereiche unter besonderer Berücksichtigung der Stickstoff-und Phosphor-Bilanz der Landwirtschaft und der Humanernährung. DLG-Forschungsberichte zur Tierernährung (in print)Google Scholar
  33. 33.
    Jansson SL (1983) Nitrogen and phosphorus budgets for two regions (countries) in Sweden with special reference to agricultural conditions. Skogs- o Lantbr akad Tidstr 122: 293–302Google Scholar
  34. 34.
    Jenkinson DS (1986) Nitrogen in UK arable agriculture. Journal of the Royal Agricultural Society of England 147: 178–189Google Scholar
  35. 35.
    Johnston AE, Goulding WT and Poulton PR (1986) Soil acidification during more than 100 years under permanent grassland and woodland in Rothamsted. Soil use and management Vol 2 No 1: 3–9. See also: McGrath SP and Goulding KWT (1990) Deposition of sulphur and nitrogen from the atmosphere. Industry Agriculture and the Atmosphere—SCI Symposium, 23rd January 1990Google Scholar
  36. 36.
    Kirchmann H and Witter E (1989) Ammonia volatilization during aerobic and anaerobic mature decomposition. Plant and Soil 115: 35–41Google Scholar
  37. 37.
    Knauer N (1989) Was bringen Gewässerrandstreifen? Landwirtschaftliche Zeitschrift 51: 3025–3028. Siehe auch: Knauer N and Mander Ü (1989) Untersuchungen über die Filterwirkung verschiedener Saumbiotope an Gewässern in Schleswig-Holstein. 1 Mittl: Filterung von Stickstoff und Phosphor. Z f Kulturtechnik und Landesentwicklung 30: 365–376Google Scholar
  38. 38.
    Küther K (1989) Proteinverwertung beim Schwein und Geflügel. Vortrag bei der 29. Sitzung des DLG-Arbeitskreises für Umwelt-, Gesundheitspflege- und spezielle Ernährungsfragen in der tierischen Produktion am 14/15.03.1989 in Kleve. DLG-Forschungsberichte zur Tierernährung (in print)Google Scholar
  39. 39.
    Landwirtschaftsministerium von Baden-Württemberg (1989) Stellungnahme des Ministers Herr Dr. Weiser zur EG-Directive KOM (88) 708 LABL Nr C 54 vom 03.03.89 in einem Schreiben an den Dtsch Bauernverband vom 30.11.1989 sowie an die EG in Brüssel im Nov 1989Google Scholar
  40. 40.
    Larsson U, Elmgreen R and Wulff F (1985) Eutrophication and the Baltic Sea: Causes and consequences Ambio 14: 9–14Google Scholar
  41. 41.
    Lenis NP (1989) Lower nitrogen excretion in pig husbandry by feeding: Current and future possibilities. Netherlands Journal of Agricultural Science 37: 61–70Google Scholar
  42. 42.
    Lidgate HJ (1987) Nutrients in the North Sea — A fertilizer industry view. Int Conf on Envir protection of the North Sea, London, 24–27 March 1987, Session Two: NutrientGoogle Scholar
  43. 43.
    Lübkert B, Derwent R, Alcamo J and Bartnicki J (1989) The effects of selected NOx reductions scenarios on long-term nitrogen deposition and episodic ozone levels in Europe. Environmental Pollution 58: 237–254Google Scholar
  44. 44.
    Lütkemeyer B (1990) Wer umweltfreundlich füttert wird belohnt. Top agrar 3: 8–11Google Scholar
  45. 45.
    Mengel K (1968) Ernährung und Stoffwechsel der Pflanze. Gustav-Fischer-Verlag StuttgartGoogle Scholar
  46. 46.
    Naes K, Ibrekk UO and Molvaer J: Oinfang ar Landbruksforurens ninger i marine omväder-forprosjekt; Nivarapport 0–88152 (in print)Google Scholar
  47. 47.
    NERC (National Environment Research Council) (Nov. 1989) North Sea project information sheets No 1–7Google Scholar
  48. 48.
    Nilsson J and Grennfelt P (1988) Critical loads for sulphur and nitrogen. Report from a workshop held at Skokloster, Sweden 19–24 MarchGoogle Scholar
  49. 49.
    NPO Report (1984) cited by RørdamGoogle Scholar
  50. 50.
    Rat der Sachverständigen für Umweltfragen (1985) Umweltprobleme der Landwirtschaft. Sondergutachten März 1985. Verlag W. Kohlhammer GmbH, Stuttgart und MainzGoogle Scholar
  51. 51.
    RIVM (Rijksinstituut voor volksgezondheid en milieuhygiene) (1988) Zorgen voor morgen. Nationale Milieuverkenning 1985–2010/eindred; F Langeweg. Alphen van den Rijn: Samson HD, Tjeenk Willink I/IIGoogle Scholar
  52. 52.
    Rørdam E (1985) Tendenzen der Grundwasserbelastung durch Nitrat in Dänemark. Kurzfassung der Fachvorträge Kongreß Wasser Berlin 1985, 22–26 April 1985Google Scholar
  53. 53.
    Sauerbeck D (1985) Funktionen, Güte und Belastbarkeit des Bodens aus agrikulturchemischer Sicht. Materialien zur Umweltforschung, hrsg. vom Rat von Sachverständigen für Umweltfragen, Mai 1985. Verlag W Kohlhammer GmbH, Stuttgart und MainzGoogle Scholar
  54. 54.
    SchALVO Baden-Württemberg (1987) Verordnung des Ministeriums für Umwelt über Schutzbestimmungen in Wasser- und Quellschutzgebieten und die Gewährung von Ausgleichsleistungen vom 27 Nov 1987 (GBL 1987 Nr 22: 742–751)Google Scholar
  55. 55.
    Schrøder H (1985) Nitrogen losses from Danish agriculture — trends and consequences. Agriculture, Ecosystems and Environment, 14: 279–289Google Scholar
  56. 56.
    Schwarz G (1990) Phosphorverwertung beim Schwein. Vortrag bei der 29. Sitzung des DLG-Arbeitskreises für Umwelt-, Gesundheitspflege und spezielle Ernährungsfragen in der tierischen Produktion am 14/15.03.1989 in Kleve. DLG-Forschungsberichte (in print)Google Scholar
  57. 57.
    Schwertmann U (1989) Vortrag zum Forschungsbedarf hinsichtlich des Bodenschutzes anläßlich der Arbeitssitzung des BMFT-AK Bodenschutz bei der Jahrestagung '89 der Dtsch Bodenkundl Gesellsch am 8 September in MünsterGoogle Scholar
  58. 58.
    Seitzinger SP, Nixon SW and Pilson ME (1984) Denitrification and nitrous oxide production in a coastal marine ecosystem. Limnol Oceanogr 29 (1): 73–83Google Scholar
  59. 59.
    Stadelmann FX (1988) N in der Landwirtschaft: Kreislauf, Probleme, Verluste, Synthese, Schlußfolgerungen. Oktobertagung der Eidgenössischen Forschungsanstalt für Agrikulturchemie und Umwelthygiene, CH-3097 Liebefeld: 1–51Google Scholar
  60. 60.
    Toupance G (1987) Les climats de pollution en europe: caracterisation et classification. In: Air pollution and ecosystems: Edited by P Mathy. D Reidel Publishing Company, Dordrecht/Boston/Lancaster/Tokyo: 56–67.Google Scholar
  61. 61.
    Vlugschrift (1985) Dierlijke Mest. Vlugschrift voor de Landbouw 406: 2–12Google Scholar
  62. 62.
    Vuuren HG van and Meijs JAC (1987) Manure as a source of nitrogen and phosphorus in soils: In: Animal Manure on Grassland and Fodder Crops. Fertilizer or Waste? Martinus Nijhoff Publishers — Dordrecht/Boston/Lancaster: 17–26Google Scholar
  63. 63.
    Werner W (1990) Agronomic and environmental aspects of the use of manures and slurries as fertilizer material with special regard to phosphorus. IFA/Imphos-Seminar ‘The role of phosphates in balanced fertilization’, Marrakech, Marocco, 24–27 October 1989 (in print)Google Scholar
  64. 64.
    Werner W, Auerswald K, Isermann K and Olfs HW (1989) Landwirtschaft und Gewässerschutz. Pflug und Spaten 5: 4–5Google Scholar
  65. 65.
    Whitehead DC, Pain BF and Ryden JC (1986) Nitrogen in UK Grassland Agriculture. Journal of the Royal Agricultural Society of England 147: 190–201Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • K. Isermann
    • 1
  1. 1.Agricultural Research Station of BASF AktiengesellschaftLimburgerhof

Personalised recommendations