Advertisement

Journal of Theoretical Probability

, Volume 1, Issue 4, pp 357–370 | Cite as

On the factor sets of measures and local tightness of convolution semigroups over Lie groups

  • S. G. Dani
  • M. McCrudden
Article

Abstract

It is shown that for a large class of Lie groups (called weakly algebraic groups) including all connected semisimple Lie groups the following holds: for any probability measure μ on the Lie group the set of all two-sided convolution factors is compact if and only if the centralizer of the support of μ inG is compact. This is applied to prove that for any connected Lie groupG, any homomorphism of any real directed (submonogeneous) semigroup into the topological semigroup of all probability measures onG is locally tight.

Key Words

Lie group probability measures convolution semigroups local tightness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dani, S. G., and McCrudden, M. (1987). Factors, roots and embeddability of measures on Lie groups, to appear inMath. Zeit.Google Scholar
  2. 2.
    Dani, S. G., and McCrudden, M. (1986). Parabolic subgroups and factor compactness of measures on semisimple Lie groups, inProbability Measures on Groups, Proc. Oberwolfach 1985 (Ed. H. Heyer), Lecture Notes in Mathematics 1210, Springer-Verlag, Berlin.Google Scholar
  3. 3.
    Parthasarathy, K. R. (1967).Probability Measures on Metric Spaces, Academic, New York.Google Scholar
  4. 4.
    Hochschild, G. P. (1981).Basic Theory of Algebraic Groups and Lie Algebras, Springer-Verlag, Berlin.Google Scholar
  5. 5.
    McCrudden, M. (1982). Local tightness of convolution semigroups over locally compact groups,Probability Measures on Groups, Proc. Oberwolfach 1981 (Ed. H. Heyer), Lecture Notes in Mathematics 928, Springer-Verlag, Berlin.Google Scholar
  6. 7.
    Burrell, Q. L., and McCrudden, M. (1974). Infinitely divisible distributions on connected nilpotent Lie groups,J. Lond. Math. Soc. 7 (2), 584–588.Google Scholar
  7. 8.
    Borel, A., and Tits, J. (1965). Groupes reductifs,Publ. Math. I.H.E.S. 27, pp. 55–150.Google Scholar
  8. 9.
    Borel, A. (1969).Linear Algebraic Groups, W. A. Benjamin, New York.Google Scholar
  9. 10.
    Chevalley, C. (1951).Theorie de Groupes de Lie, Tome II, Hermann, Paris.Google Scholar
  10. 11.
    Varadarajan, V. S. (1974).Lie groups, Lie Algebras and their Representations, Prentice-Hall, Engelwood Cliffs, New Jersey.Google Scholar
  11. 12.
    Hochschild, G. (1965),The Structure of Lie Groups, Holden Day, San Francisco.Google Scholar
  12. 13.
    Borel, A., and Tits, J. (1971). Elements unipotents de sous groupes paraboliques de groupes reductifs I,Invent. Math. 12, 95–104.Google Scholar
  13. 14.
    Dani, S. G. (1982). On ergodic quasi-invariant measures of group automorphisms,Isr. J. Math. 43, 62–74.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • S. G. Dani
    • 1
  • M. McCrudden
    • 2
  1. 1.School of MathematicsTata Institute of Fundamental ResearchBombayIndia
  2. 2.Department of MathematicsUniversity of ManchesterManchesterEngland

Personalised recommendations