Potential Analysis

, Volume 2, Issue 3, pp 249–254 | Cite as

Hölder type quasicontinuity

  • Jan Malý


It is proved that a functionuLm,p(Rn) (which coincides with the Sobolev spaceW1,p(Rn) ifm=1) coincides with a Hölder continuous functionw outside a set of smallm,q-capacity, whereq<p. Moreover, ifm=1, then the functionw can be chosen to be close tou in theW1,p-norm.

Mathematics Subject Classifications (1991)

46E35 31B15 

Key words

Hölder continuity Sobolev spaces capacity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calderón, A. P.: Lebesgue spaces of differentiable functions and distributions,Proc. Symp. Pure Math. 4 (1961), 33–49.Google Scholar
  2. 2.
    Calderón, A.P. and Zygmund, A.: Local properties of solutions of elliptic partial differential operators,Studia Math. 20 (1961), 171–225.Google Scholar
  3. 3.
    Deny, J. and Lions, J. L.: Les espaces du type de Beppo Levi,Ann. Inst. Fourier (Grenoble) 5 (1953/54), 305–370.Google Scholar
  4. 4.
    Liu, Fon-Che: A Lusin type property of Sobolev functions,Indiana Univ. Math. J. 26 (1977), 645–651.Google Scholar
  5. 5.
    Maz'ya, V. G. and Khavin, V. P.: Nonlinear potential theory,Uspekhi Mat. Nauk 27(6) (1972), 67–138. English translation:Russian Math. Surveys 27 (1972), 71–148.Google Scholar
  6. 6.
    Meyers, N. G.: A theory of capacities for potentials of functions in Lebesgue classes,Math. Scand. 26 (1970), 255–292.Google Scholar
  7. 7.
    Meyers, N. G.: Continuity properties of potentials,Duke Math. J. 42 (1975), 157–166.Google Scholar
  8. 8.
    Michael, J. L. and Ziemer, W. P.: A Lusin type approximation of Sobolev functions by smooth functions,Contemporary Math., Amer. Math. Soc. 42 (1985), 135–167.Google Scholar
  9. 9.
    Reshetnyak, Yu. G.: On the concept of capacity in the theory of functions with generalized derivatives,Sibirsk. Mat. Zh. 10 (1969), 1109–1138.Google Scholar
  10. 10.
    Triebel, H.:Theory of Function Spaces, Akademische Verlagsgesellschaft & Portig K.-G., Leipzig, 1983.Google Scholar
  11. 11.
    Ziemer, W. P.:Weakly Differentiable Functions, Sobolev Spaces and Function of Bounded Variation, Graduate Text in Mathematics 120, Springer-Verlag, 1989.Google Scholar
  12. 12.
    Ziemer, W. P.: Uniform differentiability of Sobolev functions,Indiana Univ. Math. J. 37(4)(1988), 789–799.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Jan Malý
    • 1
  1. 1.Department of MathematicsCharles UniversityPraha 8Czechia

Personalised recommendations