Advertisement

Journal of Statistical Physics

, Volume 64, Issue 3–4, pp 829–841 | Cite as

Self-affine fractal clusters: Conceptual questions and numerical results for directed percolation

  • B. Hede
  • J. Kertész
  • T. Vicsek
Short Communications

Abstract

In this paper we address the question of the existence of a well defined, non-trivial fractal dimensionD of self-affine clusters. In spite of the obvious relevance of such clusters to a wide range of phenomena, this problem is still open since thedifferent published predictions forD have not been tested yet. An interesting aspect of the problem is that a nontrivial global dimension for clusters is in contrast with the trivial global dimension of self-affine functions. As a much studied example of self-affine structures, we investigate the infinite directed percolation cluster at the threshold. We measuredD ind=2 dimensions by the box counting method. Using a correction to scaling analysis, we obtainedD=1.765(10). This result does not agree with any of the proposed relations, but it favorsD=1+(1-σν)/σν, whereν andν are the correlation length exponents andσ is a Fisher exponent in the cluster scaling.

Key words

Fractal dimension self-affinity directed percolation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1982).Google Scholar
  2. 2.
    J. Feder,Fractals (Plenum Press, New York, 1988).Google Scholar
  3. 3.
    T. Vicsek,Fractal Growth Phenomena (World Scientific, Singapore, 1989).Google Scholar
  4. 4.
    B. B. Mandelbrot,Physica Scripta 32:257 (1985).Google Scholar
  5. 5.
    J. P. Nadal, B. Derrida, and J. Vannimenius,Phys. Rev. B 30:376 (1984).Google Scholar
  6. 6.
    W. Kinzel, inPercolation Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds. (A. Hilger, Bristol, 1983), p. 425.Google Scholar
  7. 7.
    J. W. Essam, A. J. Guttman, and K. De' Bell,J. Phys. A 21:3815 (1988).Google Scholar
  8. 8.
    P. Grassberger,J. Phys. A 22:3673 (1989).Google Scholar
  9. 9.
    J. A. M. S. Duarte,Z. Phys. B 80:299 (1990).Google Scholar
  10. 10.
    N. Van Lien and B. I. Shklovskii,Solid State Commun. 38:99 (1981).Google Scholar
  11. 11.
    J. Kertész and T. Vicsek,J. Phys. C 13:L343 (1980).Google Scholar
  12. 12.
    P. Grassberger,J. Phys. A 18:L215 (1985).Google Scholar
  13. 13.
    J. Krug, J. Kertész, and D. E. Wolf,Europhys. Lett. 12:113 (1990).Google Scholar
  14. 14.
    H. Leinders, J. Kertész, and D. E. Wolf, to be published.Google Scholar
  15. 15.
    M. Henkel and H. J. Herrmann,J. Phys. A 23:3719 (1990).Google Scholar
  16. 16.
    S. P. Obukhov,Phys. Rev. Lett. 65:1395 (1990).Google Scholar
  17. 17.
    D. E. Wolf, J. Kertész, and S. S. Manna, preprint.Google Scholar
  18. 18.
    M. Henkel and V. Privman,Phys. Rev. Lett. 65:1777 (1990).Google Scholar
  19. 19.
    D. K. Arrowsmith and J. W. Essam,Phys. Rev. Lett. 65:3068 (1990).Google Scholar
  20. 20.
    D. Stauffer,Introduction to Percolation Theory (Taylor and Francis, London, 1985).Google Scholar
  21. 21.
    R. Jullien and R. Botet,Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).Google Scholar
  22. 22.
    T. Vicsek,J. Phys. A 16:L647 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • B. Hede
    • 1
  • J. Kertész
    • 2
  • T. Vicsek
    • 3
  1. 1.HLRZ c/o KFA JülichJülich 1Germany
  2. 2.Institute for Theoretical Physics, UniversityD-Köln 41Germany
  3. 3.Department of Atomic PhysicsEötvös UniversityBudapestHungary

Personalised recommendations