Journal of Statistical Physics

, Volume 72, Issue 5–6, pp 879–1167

Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory

  • Aernout C. D. van Enter
  • Roberto Fernández
  • Alan D. Sokal
Articles

Abstract

We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Our main results apply to local (in position space) RG maps acting on systems of bounded spins (compact single-spin space). Regarding regularity, we show that the RG map, defined on a suitable space of interactions (=formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce, and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d⩾3, these pathologies occur in a full neighborhood {β>β0, ¦h¦<ε(β)} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d⩾2, the pathologies occur at low temperatures for arbitrary magnetic field strength. Pathologies may also occur in the critical region for Ising models in dimension d⩾4. We discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems. In addition, we discuss critically the concept of Gibbs measure, which is at the heart of present-day classical statistical mechanics. We provide a careful, and, we hope, pedagogical, overview of the theory of Gibbsian measures as well as (the less familiar) non-Gibbsian measures, emphasizing the distinction between these two objects and the possible occurrence of the latter in different physical situations. We give a rather complete catalogue of the known examples of such occurrences. The main message of this paper is that, despite a well-established tradition, Gibbsiannessshould not be taken for granted.

Key words

Renormalization group position-space renormalization real-space renormalization decimation transformation majority-rule transformation Kadanoff transformation block-spin transformation relative entropy large deviations Griffiths-Pearce pathologies Gibbs measure non-Gibbsian measure quasilocality Pirogov-Sinai theory Fermat's last theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Aizenman, Translation invariance and instability of phase coexistence in the two dimensional Ising system,Commun. Math. Phys. 73:83–94 (1980).Google Scholar
  2. 2.
    M. Aizenman, Geometric analysis ofϕ 44 fields and Ising models. Parts I and II,Commun. Math. Phys. 86:1–48 (1982).Google Scholar
  3. 3.
    M. Aizenman, The intersection of Brownian paths as a case study of a renormalization group method for quantum field theory,Commun. Math. Phys. 97:91–110 (1985).Google Scholar
  4. 4.
    M. Aizenman, J. Bricmont, and J. L. Lebowitz, Percolation of the minority spins in high-dimensional Ising models,J. Stat. Phys. 49:859–865 (1987).Google Scholar
  5. 5.
    M. Aizenman, J. T. Chayes, L. Chayes, J. Fröhlich, and L. Russo, On a sharp transition from area law to perimeter law in a system of random surfaces,Commun. Math. Phys. 92:19–69 (1983).Google Scholar
  6. 6.
    M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, Discontinuity of the magnetization in one-dimensional 1/¦x−y¦2 Ising and Potts models,J. Stat. Phys. 50:1–40 (1988).Google Scholar
  7. 7.
    M. Aizenman and R. Fernández, On the critical behavior of the magnetization in high-dimensional Ising models,J. Stat. Phys. 44:393–454 (1986).Google Scholar
  8. 8.
    M. Aizenman and R. Graham, On the renormalized coupling constant and the susceptibility inϕ 44 field theory and the Ising model in four dimensions,Nucl. Phys. B 225[FS9]:261–288 (1983).Google Scholar
  9. 9.
    M. Aizenman and E. H. Lieb, The third law of thermodynamics and the degeneracy of the ground state for lattice systems,J. Stat. Phys. 24:279–297 (1981).Google Scholar
  10. 10.
    M. P. Almeida and B. Gidas, A variational method for estimating the parameters of MRF from complete or incomplete data,Ann. Appl. Probab. 3:103–136 (1993).Google Scholar
  11. 11.
    D. J. Amit and L. Peliti, On dangerous irrelevant operators,Ann. Phys. 140:207–231 (1982).Google Scholar
  12. 12.
    P. W. Anderson and G. Yuval, Some numerical results on the Kondo problem and the inverse-square one-dimensional Ising model,J. Phys. C 4:607–620 (1971).Google Scholar
  13. 13.
    P. W. Anderson, G. Yuval, and D. R. Hamann, Exact results in the Kondo problem. II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical models,Phys. Rev. B 1:4464–4473 (1970).Google Scholar
  14. 14.
    C. Aragão de Carvalho, S. Caracciolo, and J. Fröhlich, Polymers and gϕ4 theory in four dimensions,Nucl. Phys. B 215[FS7]:209–248 (1983).Google Scholar
  15. 15.
    M. Asorey, J. G. Esteve, R. Fernández, and J. Salas, Rigorous analysis of renormalization group pathologies in the 4-state clock model,Nucl. Phys. B 392:593–618 (1993).Google Scholar
  16. 16.
    M. B. Averintsev, Gibbs description of random fields whose conditional probabilities may vanish,Probl. Inform. Transmission 11:326–334 (1975).Google Scholar
  17. 17.
    R. R. Bahadur,Some Limit Theorems in Statistics (SIAM, Philadelphia, Pennsylvania, 1971).Google Scholar
  18. 18.
    G. A. Baker and S. Krinsky, Renormalization group structure of translation invariant ferromagnets,J. Math. Phys. 18:590–607 (1977).Google Scholar
  19. 19.
    T. Balaban, Ultraviolet stability in field theory. Theφ 34 model, inScaling and Self-Similarity in Physics, J. Fröhlich, ed. (Birkhäuser, Basel, 1983).Google Scholar
  20. 20.
    T. Balaban, Large field renormalization. II. Localization, exponentiation and bounds for theR operation,Commun. Math. Phys. 122:355–392 (1989).Google Scholar
  21. 21.
    R. Balian,From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (Springer-Verlag, Berlin, 1991).Google Scholar
  22. 22.
    A. G. Basuev, Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states,Theor. Math. Phys. 58:171–182 (1984).Google Scholar
  23. 23.
    A. G. Basuev, Hamiltonian of the phase separation border and phase transitions of the first kind. I,Theor. Math. Phys. 64:716–734 (1985).Google Scholar
  24. 24.
    A. G. Basuev, Hamiltonian of the phase separation border and phase transitions of the first kind. II. The simplest disordered phases,Theor. Math. Phys. 72:861–871 (1987).Google Scholar
  25. 25.
    G. A. Battle and L. Rosen, The FKG inequality for the Yukawa2 quantum field theory,J. Stat. Phys. 22:123–192 (1980).Google Scholar
  26. 26.
    H. Bauer,Probability Theory and Elements of Measure Theory (Holt, Rinehart and Winston, New York, 1972).Google Scholar
  27. 27.
    R. T. Baumel, On spontaneously broken symmetry in the P(φ)2 model quantum field theory, Ph.D. thesis, Princeton University (June 1979).Google Scholar
  28. 28.
    T. L. Bell and K. G. Wilson, Finite-lattice approximations to renormalization groups,Phys. Rev. B 11:3431–3444 (1975).Google Scholar
  29. 29.
    G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicolò, E. Olivieri, E. Presutti, and E. Scacciatelli, Ultraviolet stability in Euclidean scalar field theories,Commun. Math. Phys. 71:95–130 (1980).Google Scholar
  30. 30.
    P. Billingsley,Convergence of Probability Measures (Wiley, New York, 1968).Google Scholar
  31. 31.
    P. Billingsley,Probability and Measure (Wiley, New York, 1979).Google Scholar
  32. 32.
    M. J. Bissett, A perturbation-theoretic derivation of Wilson's ‘incomplete integration’ theory,J. Phys. C 6:3061–3070 (1973).Google Scholar
  33. 33.
    P. M. Bleher and P. Major, Critical phenomena and universal exponents in statistical physics. On Dyson's hierarchical model,Ann. Prob. 15:431–477 (1987).Google Scholar
  34. 34.
    H. W. J. Blöte and R. H. Swendsen, First-order phase transitions and the three-state Potts model,Phys. Rev. Lett. 43:799–802 (1979).Google Scholar
  35. 35.
    E. Bolthausen, Markov process large deviations in the τ-topology,Stoch. Proc. Appl. 25:95–108 (1987).Google Scholar
  36. 36.
    C. Borgs and J. Z. Imbrie, A unified approach to phase diagrams in field theory and statistical mechanics,Commun. Math. Phys. 123:305–328 (1989).Google Scholar
  37. 37.
    C. Borgs and R. Kotecký, A rigorous theory of finite-size scaling at first-order phase transitions,J. Stat. Phys. 61:79–119 (1990).Google Scholar
  38. 38.
    H. J. Brascamp and E. H. Lieb, Some inequalities for Gaussian measures, inFunctional Integration and its Applications, A. M. Arthurs, ed. (Clarendon Press, Oxford, 1975).Google Scholar
  39. 39.
    H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,J. Funct. Anal. 22:366–389 (1976).Google Scholar
  40. 40.
    H. J. Brascamp, E. H. Lieb, and J. L. Lebowitz, The statistical mechanics of anharmonic lattices,Bull. Int. Statist. Inst. 46 (Book 1):393–404 (1975).Google Scholar
  41. 41.
    O. Bratteli and D. W. Robinson,Operator Algebras and Quantum Statistical Mechanics II (Springer-Verlag, Berlin, 1981).Google Scholar
  42. 42.
    J. Bricmont, J.-R. Fontaine, and L. J. Landau, On the uniqueness of the equilibrium state for plane rotators,Commun. Math. Phys. 56:281–290 (1977).Google Scholar
  43. 43.
    J. Bricmont, J.-R. Fontaine, J. L. Lebowitz, and T. Spencer, Lattice systems with a continuous symmetry I. Perturbation theory for unbounded spins,Commun. Math. Phys. 78:281–302 (1980).Google Scholar
  44. 44.
    J. Bricmont and A. Kupiainen, Lower critical dimension for the random field Ising model,Phys. Rev. Lett. 59:1829–1832 (1987).Google Scholar
  45. 45.
    J. Bricmont and A. Kupiainen, Phase transition in the 3d random field Ising model,Commun. Math. Phys. 116:539–572 (1988).Google Scholar
  46. 46.
    J. Bricmont, K. Kuroda, and J. L. Lebowitz, The structure of Gibbs states and phase coexistence for non-symmetric continuum Widom-Rowlinson models,Z. Wahrsch. verw. Geb. 67:121–138 (1984).Google Scholar
  47. 47.
    J. Bricmont, K. Kuroda, and J. L. Lebowitz, First order phase transitions in lattice and continuous systems: Extension of Pirogov-Sinai theory,Commun. Math. Phys. 101:501–538 (1985).Google Scholar
  48. 48.
    J. Bricmont and J. Slawny, First order phase transitions and perturbation theory, inStatistical Mechanics and Field Theory: Mathematical Aspects (Proceedings, Groningen 1985, Lecture Notes in Physics #257, T. C. Dorlas, N. M. Hugenholtz, and M. Winnink, eds. (Springer-Verlag, Berlin, 1986).Google Scholar
  49. 49.
    J. Bricmont and J. Slawny, Phase transitions in systems with a finite number of dominant ground states,J. Stat. Phys. 54:89–161 (1989).Google Scholar
  50. 50.
    D. A. Browne and P. Kleban, Equilibrium statistical mechanics for kinetic phase transitions,Phys. Rev. A 40:1615–1626 (1989).Google Scholar
  51. 51.
    A. D. Bruce and A. Aharony, Coupled order parameters, symmetry-breaking irrelevant scaling fields, and tetracritical points,Phys. Rev. B 11:478–499 (1975).Google Scholar
  52. 52.
    W. Bryc, On the large deviation principle for stationary weakly dependent random fields,Ann. Prob. 20:1004–1030 (1992).Google Scholar
  53. 53.
    D. Brydges and T. Spencer, Self-avoiding walks in 5 or more dimensions,Commun. Math. Phys. 97:125–148 (1985).Google Scholar
  54. 54.
    D. Brydges and H.-T. Yau, Gradϕ perturbations of massless Gaussian fields,Commun. Math. Phys. 129:351–392 (1990).Google Scholar
  55. 55.
    T. W. Burkhardt, Random-field singularities in position-space renormalization-group transformations,Phys. Rev. Lett. 43:1629–1631 (1979).Google Scholar
  56. 56.
    T. W. Burkhardt and J. M. J. van Leeuwen, Progress and problems in real-space renormalization, inReal-Space Renormalization, T. W. Burkhardt and J. M. J. van Leeuwen, eds. (Springer-Verlag, Berlin, 1982).Google Scholar
  57. 57.
    C. Cammarota, The large block spin interaction,Nuovo Cim. B 96:1–16 (1986).Google Scholar
  58. 58.
    J. L. Cardy, One-dimensional models with 1/r 2 interactions,J. Phys. A 14:1407–1415 (1981).Google Scholar
  59. 59.
    E. A. Carlen and A. Soffer, Entropy production by block spin summation and central limit theorems,Commun. Math. Phys. 140:339–371 (1992).Google Scholar
  60. 60.
    M. Cassandro and E. Olivieri, Renormalization group and analyticity in one dimension: A proof of Dobrushin's theorem,Commun. Math. Phys. 80:255–269 (1981).Google Scholar
  61. 61.
    M. Cassandro, E. Olivieri, A. Pellegrinotti, and E. Presutti, Existence and uniqueness of DLR measures for unbounded spin systems,Z. Wahrsch. verw. Geb. 41:313–334 (1978).Google Scholar
  62. 62.
    N. N. Čencov,Statistical Decision Rules and Optimal Inference (American Mathematical Society, Providence, Rhode Island, 1982).Google Scholar
  63. 63.
    S. Chowla and M. Cowles, Remarks on equations related to Fermat's last theorem, inNumber Theory Related to Fermat's Last Theorem, N. Koblitz, ed. (Birkhäuser, Basel, 1982).Google Scholar
  64. 64.
    D. V. Chudnovsky and G. V. Chudnovsky, Transcendental methods and theta-functions, inProceedings of Symposia in Pure Mathematics, Vol. 49, Part 2 (American Mathematical Society, Providence, Rhode Island, 1989), pp. 167–232.Google Scholar
  65. 65.
    F. S. Cohen and D. B. Cooper, Simple parallel hierarchical and relaxation algorithms for segmenting noncausal Markovian random fields,IEEE Trans. Pattern Anal. Machine Intell. 9:195–219 (1987).Google Scholar
  66. 66.
    J. E. Cohen, Y. Iwasa, G. Rautu, M. B. Ruskai, E. Seneta, and G. Zbaganu, Relative entropy under mappings by stochastic matrices,Lin. Alg. Appl. 179:211–235 (1993).Google Scholar
  67. 67.
    F. Comets, Grandes déviations pour des champs de Gibbs sur ℤd,C. R. Acad. Sci. Paris I 303:511–513 (1986).Google Scholar
  68. 68.
    I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,Ergodic Theory (Springer-Verlag, Berlin, 1982).Google Scholar
  69. 69.
    I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten,Magyar Tud. Akad. Mat. Kutató Int. Közl. 8:85–108 (1963) [see alsoMath. Rev. 29, #1671 (1965)].Google Scholar
  70. 70.
    I. Csiszár,I-divergence geometry of probability distributions and minimization problems,Ann. Prob. 3:146–158 (1975).Google Scholar
  71. 71.
    I. Csiszár, Sanov property, generalized I-projection and a conditional limit theorem,Ann. Prob. 12:768–793 (1984).Google Scholar
  72. 72.
    H. A. M. Daniëls and A. C. D. van Enter, Differentiability properties of the pressure in lattice systems,Commun. Math. Phys. 71:65–76 (1980).Google Scholar
  73. 73.
    J. de Coninck and C. M. Newman, The magnetization-energy scaling limit in high dimension,J. Stat. Phys. 59:1451–1467 (1990).Google Scholar
  74. 74.
    K. Decker, A. Hasenfratz, and P. Hasenfratz, Singular renormalization group transformations and first order phase transitions (II). Monte Carlo renormalization group results,Nucl. Phys. B 295[FS21]:21–35 (1988).Google Scholar
  75. 75.
    C. Dellacherie and P.-A. Meyer,Probabilities and Potential (North-Holland, Amsterdam, 1978).Google Scholar
  76. 76.
    P. Dénes, Über die Diophantische Gleichungx l +y l =cz l,Acta Math. 88:241–251 (1952).Google Scholar
  77. 77.
    J.-D. Deuschel and D. W. Stroock,Large Deviations (Academic Press, San Diego, 1989).Google Scholar
  78. 78.
    L. E. Dickson,History of the Theory of Numbers, Vol. II (Chelsea, New York, 1971).Google Scholar
  79. 79.
    E. L. Dinaburg and A. E. Mazel, Low-temperature phase transitions in ANNNI model, inProceedings 8th International Congress on Mathematical Physics, M. Mebkhout and R. Sénéor, eds. (World Scientific, Singapore, 1987).Google Scholar
  80. 80.
    E. L. Dinaburg and A. E. Mazel, Analysis of low-temperature phase diagram of the microemulsion model,Commun. Math. Phys. 125:25–42 (1989).Google Scholar
  81. 81.
    E. L. Dinaburg, A. E. Mazel, and Ya. G. Sinai, ANNNI model and contour models with interactions, inMathematical Physics Reviews, Soviet Science Reviews Section C, Vol. 6, S. P. Novikov, ed. (Gordon and Breach, New York, 1986).Google Scholar
  82. 82.
    E. L. Dinaburg and Ya. G. Sinai, An analysis of ANNNI model by Peierl's [sic] contour method,Commun. Math. Phys. 98:119–144 (1985).Google Scholar
  83. 83.
    P. G. L. Dirichlet, Mémoire sur l'impossibilité de quelques équations indéterminées du cinquième degré,J. Reine Angew. Math. (Crelle's J.) 3:354–376 (1828).Google Scholar
  84. 84.
    R. L. Dobrushin, Existence of a phase transition in the two-dimensional and three-dimensional Ising models,Sov. Phys. Doklady 10:111–113 (1965).Google Scholar
  85. 85.
    R. L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity,Theor. Prob. Appl. 13:197–224 (1968).Google Scholar
  86. 86.
    R. L. Dobrushin, The problem of uniqueness of a Gibbs random field and the problem of phase transitions,Funct. Anal. Appl. 2:302–312 (1968).Google Scholar
  87. 87.
    R. L. Dobrushin, Gibbs states describing coexistence of phases for a three-dimensional Ising model,Theor. Prob. Appl. 17:582–600 (1972).Google Scholar
  88. 88.
    R. L. Dobrushin, Gaussian random fields—Gibbsian point of view, inMulticomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai, eds. (Marcel Dekker, New York, 1980), pp. 119–152.Google Scholar
  89. 89.
    R. L. Dobrushin, J. Kolafa, and S. B. Shlosman, Phase diagram of the two-dimensional Ising antiferromagnet (computer-assisted proof),Commun. Math. Phys. 102:89–103 (1985).Google Scholar
  90. 90.
    R. L. Dobrushin and M. R. Martirosyan, Nonfinite perturbations of Gibbs fields,Theor. Math. Phys. 74:10–20 (1988).Google Scholar
  91. 91.
    R. L. Dobrushin and M. R. Martirosyan, Possibility of high-temperature phase transitions due to the many-particle nature of the potential,Theor. Math. Phys. 75:443–448 (1988).Google Scholar
  92. 92.
    R. L. Dobrushin and E. A. Pecherski, Uniqueness condition for finitely dependent random fields, inRandom Fields. Esztergom (Hungary) 1979, Vol. I (North-Holland, Amsterdam, 1981).Google Scholar
  93. 93.
    R. L. Dobrushin and E. A. Pecherski, A criterion for the uniqueness of Gibbsian fields in the non-compact case, inProbability Theory and Mathematical Statistics, Lecture Notes in Mathematics #1021, (Springer-Verlag, Berlin, 1983), pp. 97–110.Google Scholar
  94. 94.
    R. L. Dobrushin and S. B. Shlosman, Nonexistence of one- and two-dimensional Gibbs fields with noncompact group of continuous symmetries, inMulticomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai, eds. (Marcel Dekker, New York, 1980), pp. 199–210.Google Scholar
  95. 95.
    R. L. Dobrushin and S. B. Shlosman, Completely analytic random fields, inStatistical Mechanics and Dynamical Systems, J. Fritz, A. Jaffe and D. Szàsz, eds. (Birkhäuser, Basel, 1985).Google Scholar
  96. 96.
    R. L. Dobrushin and S. B. Shlosman, Constructive criterion for the uniqueness of a Gibbs field, inStatistical Mechanics and Dynamical Systems, J. Fritz, A. Jaffe and D. Szàsz, eds. (Birkhäuser, Basel, 1985).Google Scholar
  97. 97.
    R. L. Dobrushin and S. B. Shlosman, The problem of translation invariance of Gibbs states at low temperatures, inMathematical Physics Reviews, Soviet Science Reviews Section C, Vol. 5, S. P. Novikov, ed. (Gordon and Breach, New York, 1985).Google Scholar
  98. 98.
    R. L. Dobrushin and S. B. Shlosman, Completely analytical interactions: Constructive description,J. Stat. Phys. 46:983–1014 (1987).Google Scholar
  99. 99.
    R. L. Dobrushin and M. Zahradnik, Phase diagrams for continuous spin systems, inMathematical Problems of Statistical Physics and Dynamics, R. L. Dobrushin, ed. (Reidel, Dordrecht, 1985).Google Scholar
  100. 100.
    Y. Domar, On the Diophantine equation ¦Ax n −By n¦=1,Math. Scand. 2:29–32 (1954).Google Scholar
  101. 101.
    M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I,Commun. Pure Appl. Math. 28:1–47 (1975).Google Scholar
  102. 102.
    M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, II,Commun. Pure Appl. Math. 28:279–301 (1975).Google Scholar
  103. 103.
    M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, III,Commun. Pure Appl. Math. 28:389–461 (1976).Google Scholar
  104. 104.
    M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, IV,Commun. Pure Appl. Math. 36:183–212 (1983).Google Scholar
  105. 105.
    T. C. Dorlas and A. C. D. van Enter, Non-Gibbsian limit for large-block majority-spin transformations,J. Stat. Phys. 55:171–181 (1989).Google Scholar
  106. 106.
    N. Dunford and J. T. Schwartz,Linear Operators (Interscience, New York, 1958).Google Scholar
  107. 107.
    F. Dunlop, Correlation inequalities for multicomponent rotators,Commun. Math. Phys. 49:247–256 (1976).Google Scholar
  108. 108.
    F. Dunlop and C. M. Newman, Multicomponent field theories and classical rotators,Commun. Math. Phys. 44:223–235 (1975).Google Scholar
  109. 109.
    E. B. Dynkin, Sufficient statistics and extreme points,Ann. Prob. 6:705–730 (1978).Google Scholar
  110. 110.
    R. E. Edwards,Fourier Series: A Modern Introduction, Vol. I (Holt, Rinehart and Winston, New York, 1967).Google Scholar
  111. 111.
    R. G. Edwards and A. D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm,Phys. Rev. D 38:2009–2012 (1988).Google Scholar
  112. 112.
    R. S. Ellis,Entropy, Large Deviations and Statistical Mechanics (Springer-Verlag, Berlin, 1985).Google Scholar
  113. 113.
    J. H. Evertse,Upper Bounds for the Numbers of Solutions of Diophantine Equations (Mathematisch Centrum, Amsterdam, 1983).Google Scholar
  114. 114.
    G. Felder and J. Fröhlich, Intersection properties of simple random walks: A renormalization group approach,Commun. Math. Phys. 97:111–124 (1985).Google Scholar
  115. 115.
    B. U. Felderhof, Phase transitions in one-dimensional cluster-interaction fluids. III. Correlation functions,Ann. Phys. 58:281–300 (1970).Google Scholar
  116. 116.
    B. U. Felderhof and M. E. Fisher, Phase transitions in one-dimensional cluster-interaction fluids. II. Simple logarithmic model,Ann. Phys. 58:268–280 (1970).Google Scholar
  117. 117.
    R. Fernández, J. Fröhlich, and A. D. Sokal,Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (Springer-Verlag, Berlin, 1992).Google Scholar
  118. 118.
    M. E. Fisher, On discontinuity of the pressure,Commun. Math. Phys. 26:6–14 (1972).Google Scholar
  119. 119.
    M. E. Fisher, Crossover effects and operator expansions, inRenormalization Group in Critical Phenomena and Quantum Field Theory: Proceedings of a Conference, J. D. Gunton and M. S. Green, eds. (Temple University, Philadelphia, Pennsylvania, 1974), pp. 65–68.Google Scholar
  120. 120.
    M. E. Fisher, Scaling, universality and renormalization group theory, inCritical Phenomena (Stellenbosch 1982), Lecture Notes in Physics # 186, F. J. W. Hahne, ed. (Springer-Verlag, Berlin, 1983), pp. 1–139.Google Scholar
  121. 121.
    M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic and finite systems,Phys. Rev. B 26:2507–2513 (1982).Google Scholar
  122. 122.
    M. E. Fisher and B. U. Felderhof, Phase transitions in one-dimensional cluster-interaction fluids. IA. Thermodynamics,Ann. Phys. 58:176–216 (1970).Google Scholar
  123. 123.
    M. E. Fisher and B. U. Felderhof, Phase transitions in one-dimensional cluster-interaction fluids. IB. Critical behavior,Ann. Phys. 58:217–267 (1970).Google Scholar
  124. 124.
    M. E. Fisher and S. Sarbach, Nonuniversality of tricritical behavior,Phys. Rev. Lett. 41:1127–1130 (1978).Google Scholar
  125. 125.
    H. Föllmer, On entropy and information gain in random fields,Z. Wahrsch. verw. Geb. 26:207–217 (1973).Google Scholar
  126. 126.
    H. Föllmer, Random fields and diffusion processes, inÉcole d'été de Probabilités de Saint-Flour XV-XVII, Lecture Notes in Mathematics #1362, P. Hennequin, ed. (Springer-Verlag, Berlin, 1988).Google Scholar
  127. 127.
    H. Föllmer and S. Orey, Large deviations for the empirical field of a Gibbs measure,Ann. Prob. 16:961–977 (1988).Google Scholar
  128. 128.
    C. M. Fortuin, On the random cluster model. III. The simple random cluster model,Physica 59:545–570 (1972).Google Scholar
  129. 129.
    C. M. Fortuin, J. Ginibre, and P. W. Kasteleyn, Correlation inequalities on some partially ordered sets,Commun. Math. Phys. 22:89–103 (1971).Google Scholar
  130. 130.
    C. M. Fortuin and P. W. Kasteleyn, On the random cluster model. I. Introduction and relation to other models,Physica 57:536–564 (1972).Google Scholar
  131. 131.
    Z. Friedman and J. Felsteiner, Kadanoff block transformation by the Monte-Carlo technique,Phys. Rev. B 15:5317–5319 (1977).Google Scholar
  132. 132.
    A. Frigessi and M. Piccioni, Parameter estimation for two-dimensional Ising fields corrupted by noise,Stoch. Proc. Appl. 34:297–311 (1990).Google Scholar
  133. 133.
    J. Fröhlich, On the triviality ofλϕ 44 theories and the approach to the critical point in d ≧ 4 dimensions,Nucl. Phys. B 200[FS4]:281–296 (1982).Google Scholar
  134. 134.
    J. Fröhlich, Mathematical aspects of the physics of disordered systems, inCritical Phenomena, Random Systems, Gauge Theories [Les Houches 1984], K. Osterwalder and R. Stora, eds. (North-Holland, Amsterdam, 1986), Part II, pp. 725–893.Google Scholar
  135. 135.
    J. Fröhlich, R. B. Israel, E. H. Lieb, and B. Simon, Phase transitions and reflection positivity. II. Lattice systems with short-range and Coulomb interactions,J. Stat. Phys. 22:297–347 (1980).Google Scholar
  136. 136.
    J. Fröhlich and C. E. Pfister, On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems,Commun. Math. Phys. 81:277–298 (1981).Google Scholar
  137. 137.
    J. Fröhlich and T. Spencer, The Kosterlitz-Thouless phase transition in the two-dimensional plane rotator and Coulomb gas,Phys. Rev. Lett. 46:1006–1009 (1981).Google Scholar
  138. 138.
    J. Fröhlich and T. Spencer, The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas,Commun. Math. Phys. 81:527–602 (1981).Google Scholar
  139. 139.
    J. Fröhlich and T. Spencer, Phase diagrams and critical properties of (classical) Coulomb systems, inRigorous Atomic and Molecular Physics, G. Velo and A. S. Wightman, eds. (Plenum Press, New York, 1981), pp. 327–370.Google Scholar
  140. 140.
    J. Fröhlich and T. Spencer, The phase transition in the one-dimensional Ising model with 1/r 2 interaction energy,Commun. Math. Phys. 84:87–101 (1982).Google Scholar
  141. 141.
    J. Fröhlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy,Commun. Math. Phys. 88:151–184 (1983).Google Scholar
  142. 142.
    G. Gallavotti and S. Miracle-Sole, Statistical mechanics of lattice systems,Commun. Math. Phys. 5:317–324 (1967).Google Scholar
  143. 143.
    G. Gallavotti and S. Miracle-Sole, Correlation functions of lattice systems,Commun. Math. Phys. 7:274–288 (1968).Google Scholar
  144. 144.
    G. Gallavotti and S. Miracle-Sole, Equilibrium states of the Ising model in the two-phase region,Phys. Rev. B 5:2555–2559 (1972).Google Scholar
  145. 145.
    J. M. Gandhi, On Fermat's last theorem,Am. Math. Monthly 71:998–1006 (1964).Google Scholar
  146. 146.
    P. Gänssler, Compactness and sequential compactness in spaces of measures,Z. Wahrsch. verw. Geb. 17:124–146 (1971).Google Scholar
  147. 147.
    P. L. Garrido, A. Labarta, and J. Marro, Stationary nonequilibrium states in the Ising model with locally competing temperatures,J. Stat. Phys. 49:551–568 (1987).Google Scholar
  148. 148.
    K. Gawedzki, Rigorous renormalization group at work,Physica 140A:78–84 (1986).Google Scholar
  149. 149.
    K. Gawedzki, R. Kotecký, and A. Kupiainen, Coarse graining approach to first order phase transitions,J. Stat. Phys. 47:701–724 (1987).Google Scholar
  150. 150.
    K. Gawedzki and A. Kupiainen, A rigorous block spin approach to massless lattice theories,Commun. Math. Phys. 77:31–64 (1980).Google Scholar
  151. 151.
    K. Gawedzki and A. Kupiainen, Block spin renormalization group for dipole gas andΔφ)4,Ann. Phys. 147:198–243 (1983).Google Scholar
  152. 152.
    K. Gawedzki and A. Kupiainen, Gross-Neveu model through convergent perturbation expansions,Commun. Math. Phys. 102:1–30 (1985).Google Scholar
  153. 153.
    K. Gawedzki and A. Kupiainen, Massless latticeφ 44 theory: Rigorous control of a renormalizable asymptotically free model,Commun. Math. Phys. 99:197–252 (1985).Google Scholar
  154. 154.
    K. Gawedzki and A. Kupiainen, Asymptotic freedom beyond perturbation theory, inCritical Phenomena, Random Systems, Gauge Theories [Les Houches 1984], K. Osterwalder and R. Stora, eds. (North-Holland, Amsterdam, 1986), Part I, pp. 185–293.Google Scholar
  155. 155.
    D. Geman, Random fields and inverse problems in imaging, inEcole d'Eté de Probabilités de Saint-Flour XVIII-1988, Lecture Notes in Mathematics #1427, (Springer-Verlag, Berlin, 1990), pp. 116–193.Google Scholar
  156. 156.
    S. Geman, Hidden Markov models for image analysis, Lecture at Istituto per le Applicazioni del Calcolo, Rome (July 1990).Google Scholar
  157. 157.
    S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images,IEEE Trans. Pattern Anal. Machine Intell. 6:721–741 (1984).Google Scholar
  158. 158.
    H.-O. Georgii, Large deviations and maximum entropy principle for interacting random fields on ℤd,Ann. Prob., to appear.Google Scholar
  159. 159.
    H.-O. Georgii, Two remarks on extremal equilibrium states,Commun. Math. Phys. 32:107–118 (1973).Google Scholar
  160. 160.
    H.-O. Georgii,Gibbs Measures and Phase Transitions (de Gruyter, Berlin, 1988).Google Scholar
  161. 161.
    B. Gidas, A renormalization group approach to image processing problems,IEEE Trans. Pattern Anal. Mach. Intell. 11:164–180 (1989).Google Scholar
  162. 162.
    J. Glimm and A. Jaffe, Positivity of theϕ 34 Hamiltonian,Fortschr. Physik 21:327–376 (1973).Google Scholar
  163. 163.
    J. Glimm and A. Jaffe,Quantum Physics: A Functional Integral Point of View (Springer-Verlag, Berlin, 1981).Google Scholar
  164. 164.
    S. Goldstein, A note on specifications,Z. Wahrsch. verw. Geb. 46:45–51 (1978).Google Scholar
  165. 165.
    S. Goldstein, R. Kuik, J. L. Lebowitz, and C. Maes, From PCA's to equilibrium systems and back,Commun. Math. Phys. 125:71–79 (1989).Google Scholar
  166. 166.
    A. González-Arroyo, M. Okawa, and Y. Shimizu, Monte Carlo renormalization-group study of the four-dimensional Z2 gauge theory,Phys. Rev. Lett. 60:487–490 (1988).Google Scholar
  167. 167.
    A. González-Arroyo and J. Salas, Computing the couplings of Ising systems from Schwinger-Dyson equations,Phys. Lett. B 214:418–424 (1988).Google Scholar
  168. 168.
    A. González-Arroyo and J. Salas, Renormalization group flow of the two-dimensional Ising model atT< T c,Phys. Lett. B 261:415–423 (1991).Google Scholar
  169. 169.
    M. Göpfert and G. Mack, Proof of confinement of static quarks in 3-dimensionalU(1) lattice gauge theory for all values of the coupling constant,Commun. Math. Phys. 82:545–606 (1982).Google Scholar
  170. 170.
    F. P. Greenleaf,Invariant Means on Topological Groups (Van Nostrand-Reinhold, New York, 1969).Google Scholar
  171. 171.
    R. B. Griffiths, Peierls' proof of spontaneous magnetization of a two-dimensional Ising ferromagnet,Phys. Rev. A136:437–439 (1964).Google Scholar
  172. 172.
    R. B. Griffiths, Rigorous results and theorems, inPhase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).Google Scholar
  173. 173.
    R. B. Griffiths, Phase diagrams and higher-order critical points,Phys. Rev. B 12:345–355 (1975).Google Scholar
  174. 174.
    R. B. Griffiths, Mathematical properties of renormalization-group transformations,Physica 106A:59–69 (1981).Google Scholar
  175. 175.
    R. B. Griffiths and P. A. Pearce, Position-space renormalization-group transformations: Some proofs and some problems,Phys. Rev. Lett. 41:917–920 (1978).Google Scholar
  176. 176.
    R. B. Griffiths and P. A. Pearce, Mathematical properties of position-space renormalization-group transformations,J. Stat. Phys. 20:499–545 (1979).Google Scholar
  177. 177.
    R. B. Griffiths and D. Ruelle, Strict convexity (“continuity”) of the pressure in lattice systems,Commun. Math. Phys. 23:169–175 (1971).Google Scholar
  178. 178.
    C. Grillenberger and U. Krengel, On the spatial constant of superadditive set functions in ℝd, inErgodic Theory and Related Topics, H. Michel, ed. (Akademie-Verlag, Berlin, 1982).Google Scholar
  179. 179.
    P. Groeneboom, J. Oosterhoff, and F. H. Ruymgaart, Large deviation theorems for empirical probability measures,Ann. Prob. 7:553–586 (1979).Google Scholar
  180. 180.
    L. Gross, Absence of second-order phase transitions in the Dobrushin uniqueness region,J. Stat. Phys. 25:57–72 (1981).Google Scholar
  181. 181.
    L. Gross, Thermodynamics, statistical mechanics, and random fields, inEcole d'Eté de Probabilités de Saint-Flour X-1980, Lecture Notes in Mathematics #929, (Springer-Verlag, Berlin, 1982).Google Scholar
  182. 182.
    C. Gruber and A. Sütő, Phase diagrams of lattice systems of residual entropy,J. Stat. Phys. 42:113–142 (1988).Google Scholar
  183. 183.
    P. Hall and C. C. Heyde,Martingale Limit Theory and its Application (Academic Press, New York, 1980).Google Scholar
  184. 184.
    T. Hara, A rigorous control of logarithmic corrections in four-dimensionalϕ 4 spin systems. I. Trajectory of effective Hamiltonians,J. Stat. Phys. 47:57–98 (1987).Google Scholar
  185. 185.
    T. Hara, Mean-field critical behaviour for correlation length for percolation in high dimensions,Prob. Theory Related Fields 86:337–385 (1990).Google Scholar
  186. 186.
    T. Hara and G. Slade, Mean-field critical behaviour for percolation in high dimensions,Commun. Math. Phys. 128:333–391 (1990).Google Scholar
  187. 187.
    T. Hara and G. Slade, On the upper critical dimension of lattice trees and lattice animals,J. Stat. Phys. 59:1469–1510 (1990).Google Scholar
  188. 188.
    T. Hara and G. Slade, Critical behaviour of self-avoiding walk in five or more dimensions,Bull. Am. Math. Soc. 25:417–423 (1991).Google Scholar
  189. 189.
    T. Hara and G. Slade, The lace expansion for self-avoiding walk in five or more dimensions,Rev. Math. Phys. 4:235–327 (1992).Google Scholar
  190. 190.
    T. Hara and G. Slade, Self-avoiding walk in five or more dimensions. I. The critical behaviour,Commun. Math. Phys. 147:101–136 (1992).Google Scholar
  191. 191.
    T. Hara and H. Tasaki, A rigorous control of logarithmic corrections in four-dimensionalϕ 4 spin systems. II. Critical behavior of susceptibility and correlation length,J. Stat. Phys. 47:99–121 (1987).Google Scholar
  192. 192.
    A. Hasenfratz and P. Hasenfratz, Singular renormalization group transformations and first order phase transitions (I),Nucl. Phys. B 295[FS21]:1–20 (1988).Google Scholar
  193. 193.
    A. Hasenfratz, P. Hasenfratz, U. Heller, and F. Karsch, Improved Monte Carlo renormalization group methods,Phys. Lett. B 140:76–82 (1984).Google Scholar
  194. 194.
    T. Heath,A History of Greek Mathematics (Clarendon Press, Oxford, 1921), Vol. I, pp. 91–93, 380.Google Scholar
  195. 195.
    Y. Higuchi, On the absence of non-translationally invariant Gibbs states for the two-dimensional Ising system, inRandom Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory (Esztergom 1979), J. Fritz, J. L. Lebowitz, and D. Szász, eds. (North-Holland, Amsterdam, 1981).Google Scholar
  196. 196.
    Y. Higuchi and R. Lang, On the convergence of the Kadanoff transformation towards trivial fixed points,Z. Wahrsch. verw. Geb. 58:109–123 (1981).Google Scholar
  197. 197.
    P. Holický, R. Kotecký, and M. Zahradník, Rigid interfaces for lattice models at low temperatures,J. Stat. Phys. 50:755–812 (1988).Google Scholar
  198. 198.
    W. Holsztynski and J. Slawny, Peierls condition and the number of ground states,Commun. Math. Phys. 61:177–190 (1978).Google Scholar
  199. 199.
    P. J. Huber, The behavior of maximum likelihood estimates under nonstandard conditions, inProceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, L. M. Le Cam and J. Neyman, eds. (University of California Press, Berkeley, 1967), Vol. I, pp. 221–233.Google Scholar
  200. 200.
    O. Hudák, On the character of peculiarities in the position-space renormalization-group transformations,Phys. Lett. A 73:273–274 (1979).Google Scholar
  201. 201.
    N. M. Hugenholtz,C *-algebras and statistical mechanics, inProceedings of Symposia in Pure Mathematics, Volume 38, Part 2 (American Mathematical Society, Providence, Rhode Island, 1982), pp. 407–465.Google Scholar
  202. 202.
    N. M. Hugenholtz, On the inverse problem in statistical mechanics,Commun. Math. Phys. 85:27–38 (1982).Google Scholar
  203. 203.
    D. Iagolnitzer and B. Souillard, Random fields and limit theorems, inRandom Fields (Esztergom, 1979), J. Fritz, J. L. Lebowitz, and D. Szász, eds. (North-Holland, Amsterdam, 1981), Vol. II, pp. 573–591.Google Scholar
  204. 204.
    I. A. Ibragimov and Yu. V. Linnik,Independent and Stationary Sequences of Random Variables (Wolters-Noordhoff, Groningen, 1971).Google Scholar
  205. 205.
    J. Z. Imbrie, Phase diagrams and cluster expansions for low temperatureP(φ)2 models. I. The phase diagram,Commun. Math. Phys. 82:261–304 (1981).Google Scholar
  206. 206.
    J. Z. Imbrie, Phase diagrams and cluster expansions for low temperatureP(φ)2 models. II. The Schwinger function,Commun. Math. Phys. 82:305–343 (1981).Google Scholar
  207. 207.
    S. N. Isakov, Nonanalytic features of the first order phase transition in the Ising model,Commun. Math. Phys. 95:427–443 (1984).Google Scholar
  208. 208.
    R. B. Israel, High-temperature analyticity in classical lattice systems,Commun. Math. Phys. 50:245–257 (1976).Google Scholar
  209. 209.
    R. B. Israel,Convexity in the Theory of Lattice Gases (Princeton University Press, Princeton, New Jersey, 1979).Google Scholar
  210. 210.
    R. B. Israel, Banach algebras and Kadanoff transformations, inRandom Fields (Esztergom, 1979), J. Fritz, J. L. Lebowitz, and D. Szász, eds. (North-Holland, Amsterdam, 1981), Vol. II, pp. 593–608.Google Scholar
  211. 211.
    R. B. Israel, Generic triviality of phase diagrams in spaces of long-range interactions,Commun. Math. Phys. 106:459–466 (1986).Google Scholar
  212. 212.
    R. B. Israel and R. R. Phelps, Some convexity questions arising in statistical mechanics,Math. Scand. 54:133–156 (1984).Google Scholar
  213. 213.
    L. P. Kadanoff and A. Houghton, Numerical evaluations of the critical properties of the two-dimensional Ising model,Phys. Rev. B 11:377–386 (1975).Google Scholar
  214. 214.
    J.-P. Kahane,Séries de Fourier Absolument Convergentes (Springer-Verlag, Berlin, 1970).Google Scholar
  215. 215.
    I. A. Kashapov, Justification of the renormalization-group method,Theor. Math. Phys. 42:184–186 (1980).Google Scholar
  216. 216.
    A. Katz,Principles of Statistical Mechanics (Freeman, San Francisco, 1967).Google Scholar
  217. 217.
    T. Kennedy, Some rigorous results on majority rule renormalization group transformations near the critical point,J. Stat. Phys. 72:15–37 (1993).Google Scholar
  218. 218.
    T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long-range order,Physica 138A:320–358 (1986).Google Scholar
  219. 219.
    J. C. Kieffer, A counterexample to Perez's generalization of the Shannon-McMillan theorem,Ann. Prob. 1:362–364 (1973); Correction,Ann. Prob. 4:153–154 (1976).Google Scholar
  220. 220.
    W. Klein, D. J. Wallace, and R. K. P. Zia, Essential singularities at first-order phase transitions,Phys. Rev. Lett. 37:639–642 (1976).Google Scholar
  221. 221.
    H. Koch and P. Wittwer, A non-Gaussian renormalization group fixed point for hierarchical scalar lattice field theories,Commun. Math. Phys. 106:495–532 (1986).Google Scholar
  222. 222.
    H. Koch and P. Wittwer, On the renormalization group transformation for scalar hierarchical models,Commun. Math. Phys. 138:537–568 (1991).Google Scholar
  223. 223.
    J. M. Kosterlitz, The critical properties of the two-dimensionalxy model,J. Phys. C 7:1046–1060 (1974).Google Scholar
  224. 224.
    F. Koukiou, D. Petritis, and M. Zahradnik, Extension of the Pirogov-Sinai theory to a class of quasiperiodic interactions,Commun. Math. Phys. 118:365–383 (1988).Google Scholar
  225. 225.
    O. K. Kozlov, Gibbs description of a system of random variables,Probl. Inform. Transmission 10:258–265 (1974).Google Scholar
  226. 226.
    U. Krengel,Ergodic Theorems (de Gruyter, Berlin, 1985).Google Scholar
  227. 227.
    K. Krickeberg,Probability Theory (Addison-Wesley, Reading, Massachusetts, 1965).Google Scholar
  228. 228.
    S. Kullback,Information Theory and Statistics (Wiley, New York, 1959).Google Scholar
  229. 229.
    S. Kullback and R. A. Leibler, On information and sufficiency,Ann. Math. Stat. 22:79–86 (1951).Google Scholar
  230. 230.
    H. Künsch, Thermodynamics and statistical analysis of Gaussian random fields,Z. Wahrsch. verw. Geb. 58:407–421 (1981).Google Scholar
  231. 231.
    H. Künsch, Decay of correlations under Dobrushin's uniqueness condition and its applications,Commun. Math. Phys. 84:207–222 (1982).Google Scholar
  232. 232.
    H. Künsch, Non-reversible stationary measures for infinite interacting particle systems,Z. Wahrsch. verw. Geb. 66:407–424 (1984).Google Scholar
  233. 233.
    O. E. Lanford III, Entropy and equilibrium states in classical statistical mechanics, inStatistical Mechanics and Mathematical Problems (Battelle Seattle Rencontres 1971), Lecture Notes in Physics #20 (Springer-Verlag, Berlin, 1973), pp. 1–113.Google Scholar
  234. 234.
    O. E. Lanford III and D. W. Robinson, Statistical mechanics of quantum spin systems. III,Commun. Math. Phys. 9:327–338 (1968).Google Scholar
  235. 235.
    O. E. Lanford III and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics,Commun. Math. Phys. 13:194–215 (1969).Google Scholar
  236. 236.
    C. B. Lang, Renormalization study of compactU(1) lattice gauge theory,Nucl. Phys. B 280[FS18]:255–275 (1987).Google Scholar
  237. 237.
    S. Lang,Introduction to Diophantine Approximations (Addison-Wesley, Reading, 1966).Google Scholar
  238. 238.
    I. D. Lawrie, Tricritical scaling and renormalisation ofφ operators in scalar systems near four dimensions,J. Phys. A 12:919–940 (1979).Google Scholar
  239. 239.
    V. A. Lebesgue, Sur l'équation indéterminéex 5 +y 5 =az 5,J. Math. Pures Appl. 8:49–70 (1843).Google Scholar
  240. 240.
    J. L. Lebowitz, Coexistence of phases in Ising ferromagnets,J. Stat. Phys. 16:463–476 (1977).Google Scholar
  241. 241.
    J. L. Lebowitz, Number of phases in one component ferromagnets, inMathematical Problems in Theoretical Physics, Lecture Notes in Physics #80, G. Dell'Antonio, S. Doplicher, and G. Jona-Lasinio, eds. (Springer-Verlag, Berlin, 1978).Google Scholar
  242. 242.
    J. L. Lebowitz, Microscopic origin of hydrodynamic equations: Derivation and consequences,Physica 140A:232–239 (1986).Google Scholar
  243. 243.
    J. L. Lebowitz and C. Maes, The effect of an external field on an interface, entropic repulsion,J. Stat. Phys. 46:39–49 (1987).Google Scholar
  244. 244.
    J. L. Lebowitz, C. Maes, and E. R. Speer, Statistical mechanics of probabilistic cellular automata,J. Stat. Phys. 59:117–170 (1990).Google Scholar
  245. 245.
    J. L. Lebowitz and O. Penrose, Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapor transition,J. Math. Phys. 7:98–113 (1966).Google Scholar
  246. 246.
    J. L. Lebowitz and O. Penrose, Analytic and clustering properties of thermodynamic functions and distribution functions for classical lattice and continuous systems,Commun. Math. Phys. 11:99–124 (1968).Google Scholar
  247. 247.
    J. L. Lebowitz and O. Penrose, Divergent susceptibility of isotropic ferromagnets,Phys. Rev. Lett. 35:549–551 (1975).Google Scholar
  248. 248.
    J. L. Lebowitz, M. K. Phani, and D. F. Styer, Phase diagram of Cu-Au-type alloys,J. Stat. Phys. 38:413–431 (1985).Google Scholar
  249. 249.
    J. L. Lebowitz and E. Presutti, Statistical mechanics of unbounded spin systems,Commun. Math. Phys. 50:195–218 (1976).Google Scholar
  250. 250.
    J. L. Lebowitz and R. H. Schonmann, Pseudo-free energies and large deviations for non-Gibbsian FKG measures,Prob. Theory Related Fields 77:49–64 (1988).Google Scholar
  251. 251.
    D. H. Lehmer [Review of ref. 76],Math. Rev. 16:903 (1955).Google Scholar
  252. 252.
    B. G. Leroux, Maximum-likelihood estimation for hidden Markov models,Stoch. Proc. Appl. 40:127–143 (1992).Google Scholar
  253. 253.
    A. L. Lewis, Lattice renormalization group and thermodynamic limit,Phys. Rev. B 16:1249–1252 (1977).Google Scholar
  254. 254.
    E. H. Lieb and A. D. Sokal, A general Lee-Yang theorem for one-component and multicomponent ferromagnets,Commun. Math. Phys. 80:153–179 (1981).Google Scholar
  255. 255.
    T. M. Liggett,Interacting Particle Systems (Springer-Verlag, Berlin, 1985).Google Scholar
  256. 256.
    J. Lindenstrauss, G. Olsen, and Y. Sternfeld, The Poulsen simplex,Ann. Inst. Fourier (Grenoble)28:91–114 (1978).Google Scholar
  257. 257.
    J. Lörinczi and M. Winnink, Some remarks on almost Gibbs states, inProceedings of the NATO Advanced Studies Institute Workshop on Cellular Automata and Cooperative Systems [Les Houches 1992], N. Boccara, E. Goles, S. Martinez, and P. Picco, eds. (Kluwer, Dordrecht, 1993).Google Scholar
  258. 258.
    S. K. Ma,Modern Theory of Critical Phenomena (Benjamin, Reading, Massachusetts, 1976).Google Scholar
  259. 259.
    C. Maes and F. Redig, Anisotropic perturbations of the simple symmetric exclusion process: Long range correlations,J. Phys. I (Paris)1:669–684 (1991).Google Scholar
  260. 260.
    C. Maes and K. van de Velde, Defining relative energies for the projected Ising measure,Helv. Phys. Acta 65:1055–1068 (1992).Google Scholar
  261. 261.
    C. Maes and K. van de Velde, The interaction potential of the stationary measure of a high-noise spinflip process,J. Math. Phys. 34:3030–3038 (1993).Google Scholar
  262. 262.
    F. Martinelli and E. Olivieri, Some remarks on pathologies of renormalization-group transformations for the Ising model,J. Stat. Phys. 72:1169–1177 (1993).Google Scholar
  263. 263.
    F. Martinelli and E. Scoppola, A simple stochastic cluster dynamics: Rigorous results,J. Phys. A 24:3135–3157 (1991).Google Scholar
  264. 264.
    D. G. Martirosyan, Uniqueness of Gibbs states in lattice models with one ground state,Theor. Math. Phys. 63:511–518 (1985).Google Scholar
  265. 265.
    A. E. Mazel and Yu. M. Suhov, Random surfaces with two-sided constraints: An application of the theory of dominant ground states,J. Stat. Phys. 64:111–134 (1991).Google Scholar
  266. 266.
    A. Messager, S. Miracle-Solé, and C.-E. Pfister, Correlation inequalities and uniqueness of the equilibrium state for the plane rotator ferromagnetic model,Commun. Math. Phys. 58:19–30 (1978).Google Scholar
  267. 267.
    J. Miekisz, The global minimum of energy is not always a sum of local minima—A note on frustration,J. Stat. Phys. 71:425–434 (1993).Google Scholar
  268. 268.
    J. Miekisz, Classical lattice gas model with a unique nondegenerate but unstable periodic ground state configuration,Commun. Math. Phys. 111:533–538 (1987).Google Scholar
  269. 269.
    M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method. II,Acta Arith. 53:251–287 (1989).Google Scholar
  270. 270.
    L. J. Mordell,Diophantine Equations (Academic Press, New York, 1969).Google Scholar
  271. 271.
    J. Moulin-Ollagnier, Théorème ergodique presque sous-additif et convergence en moyenne de l'information,Ann. Inst. Henri Poincaré B 19:257–266 (1983).Google Scholar
  272. 272.
    J. Moulin-Ollagnier and D. Pinchon, Mesures de Gibbs invariantes et mesures d'équilibre,Z. Wahrsch. verw. Geb. 55:11–23 (1981).Google Scholar
  273. 273.
    J. Moulin-Ollagnier and D. Pinchon, Filtre moyennant et valeurs moyennes de capacités invariantes,Bull. Soc. Math. Fr. 110:259–277 (1982).Google Scholar
  274. 274.
    J. Moussouris, Gibbs and Markov random systems with constraints,J. Stat. Phys. 10:11–33 (1974).Google Scholar
  275. 275.
    C. Mugler,Platon et la Recherche Mathématique de son Époque (P. H. Heitz, Strasbourg-Zürich, 1948), pp. 226–236.Google Scholar
  276. 276.
    D. R. Nelson, Coexistence-curve singularities in isotropic ferromagnets,Phys. Rev. B 13:2222–2230 (1976).Google Scholar
  277. 277.
    J. Neveu,Bases Mathématiques du Calcul des Probabilités, 2nd éd. (Masson, Paris, 1980) [English translation of first edition:Mathematical Foundations of the Calculus of Probability (Holden-Day, San Francisco, 1965)].Google Scholar
  278. 278.
    C. M. Newman, Normal fluctuations and the FKG inequalities,Commun. Math. Phys. 74:119–128 (1980).Google Scholar
  279. 279.
    C. M. Newman, A general central limit theorem for FKG systems,Commun. Math. Phys. 91:75–80 (1983).Google Scholar
  280. 280.
    C. M. Newman, Private communication (1984).Google Scholar
  281. 281.
    Th. Niemeijer and J. M. J. van Leeuwen, Wilson theory for spin systems on a triangular lattice,Phys. Rev. Lett. 31:1411–1414 (1973).Google Scholar
  282. 282.
    Th. Niemeijer and J. M. J. van Leeuwen, Renormalization theory for Ising-like spin systems, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976).Google Scholar
  283. 283.
    Th. Niemeyer and J. M. J. van Leeuwen, Wilson theory for 2-dimensional Ising spin systems,Physica 71:17–40 (1974).Google Scholar
  284. 284.
    B. Nienhuis, A. N. Berker, E. K. Riedel, and M. Schick, First- and second-order phase transitions in Potts models: Renormalization-group solution,Phys. Rev. Lett. 43:737–740 (1979).Google Scholar
  285. 285.
    B. Nienhuis and M. Nauenberg, First-order phase transitions in renormalization-group theory,Phys. Rev. Lett. 35:477–479 (1975).Google Scholar
  286. 286.
    G. L. O'Brien, Scaling transformations for {0, 1}-valued sequences,Z. Wahrsch. verw. Geb. 53:35–49 (1980).Google Scholar
  287. 287.
    S. Olla, Large deviations for almost Markovian processes,Prob. Theory Related Fields 76:395–409 (1987).Google Scholar
  288. 288.
    S. Olla, Large deviations for Gibbs random fields,Prob. Theory Related Fields 77:343–357 (1988).Google Scholar
  289. 289.
    G. H. Olsen, On simplices and the Poulsen simplex, inFunctional Analysis: Surveys and Recent Results II [Proceedings of the Conference on Functional Analysis, Paderborn, Germany, 1979] (North-Holland, Amsterdam, 1980), pp. 31–52.Google Scholar
  290. 290.
    J. C. Oxtoby,Measure and Category (Springer-Verlag, Berlin, 1971).Google Scholar
  291. 291.
    Y. M. Park, Cluster expansion for classical and quantum lattice systems,J. Stat. Phys. 27:553–576 (1982).Google Scholar
  292. 292.
    Y. M. Park, Extension of Pirogov-Sinai theory of phase transitions to infinite range interactions. I. Cluster expansion,Commun. Math. Phys. 114:187–218 (1988).Google Scholar
  293. 293.
    Y. M. Park, Extension of Pirogov-Sinai theory of phase transitions to infinite range interactions. II. Phase diagram,Commun. Math. Phys. 114:219–241 (1988).Google Scholar
  294. 294.
    K. R. Parthasarathy,Probability Measures on Metric Spaces (Academic Press, New York, 1967).Google Scholar
  295. 295.
    E. A. Pecherski, The Peierls condition (GPS condition) is not always satisfied,Selecta Math. Sov. 3:87–91 (1983/1984).Google Scholar
  296. 296.
    R. Peierls, Ising's model of ferromagnetism,Proc. Camb. Phil. Soc. 32:477–481 (1936).Google Scholar
  297. 297.
    P. Pfeuty and G. Toulouse,Introduction to the Renormalization Group and to Critical Phenomena (Wiley, New York, 1977).Google Scholar
  298. 298.
    R. R. Phelps,Lectures on Choquet's Theorem (Van Nostrand, Princeton, New Jersey, 1966).Google Scholar
  299. 299.
    R. R. Phelps, Generic Fréchet differentiability of the pressure in certain lattice systems,Commun. Math. Phys. 91:557–562 (1983).Google Scholar
  300. 300.
    S. A. Pirogov, Coexistence of phases in a multicomponent lattice liquid with complex thermodynamic parameters,Theor. Math. Phys. 66:218–221 (1986).Google Scholar
  301. 301.
    S. A. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems,Theor. Math. Phys. 25:1185–1192 (1976).Google Scholar
  302. 302.
    S. A. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems. Continuation,Theor. Math. Phys. 26:39–49 (1976).Google Scholar
  303. 303.
    C. Prakash, High-temperature differentiability of lattice Gibbs states by Dobrushin uniqueness techniques,J. Stat. Phys. 31:169–228 (1983).Google Scholar
  304. 304.
    C. Preston,Random Fields (Springer-Verlag, Berlin, 1976).Google Scholar
  305. 305.
    C. Preston, Construction of specifications, inQuantum Fields, Algebras, Processes, Lecture Notes in Mathematics #534, L. Streit, ed. (Springer-Verlag, Berlin, 1980).Google Scholar
  306. 306.
    Proclus,Commentaire sur la République [Translation and notes by A. J. Festugière] (Librairie Philosophique J. Vrin, Paris, 1970), Vol. II, pp. 133–135.Google Scholar
  307. 307.
    L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition,Proc. IEEE 77:257–286 (1989).Google Scholar
  308. 308.
    C. Radin, Low temperature and the origin of crystalline symmetry,Int. J. Mod. Phys. B 1:1157–1191 (1987).Google Scholar
  309. 309.
    C. Radin, Disordered ground states of classical lattice models,Rev. Math. Phys. 3:125–135 (1991).Google Scholar
  310. 310.
    C. Rebbi and R. H. Swendsen, Monte Carlo renormalization-group studies ofq-state Potts models in two dimensions,Phys. Rev. B 21:4094–4107 (1980).Google Scholar
  311. 311.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics I: Functional Analysis (Academic Press, New York, 1972).Google Scholar
  312. 312.
    L. E. Reichl,A Modern Course in Statistical Physics (University of Texas Press, Austin, Texas, 1980).Google Scholar
  313. 313.
    P. Ribenboim,The Book of Prime Number Records, 2nd ed. (Springer-Verlag, Berlin, 1989).Google Scholar
  314. 314.
    H. L. Royden,Real Analysis, 2nd ed. (Macmillan, New York, 1968).Google Scholar
  315. 315.
    W. Rudin,Functional Analysis (McGraw-Hill, New York, 1973).Google Scholar
  316. 316.
    D. Ruelle, Some remarks on the ground state of infinite systems in statistical mechanics,Commun. Math. Phys. 11:339–345 (1969).Google Scholar
  317. 317.
    D. Ruelle,Statistical Mechanics: Rigorous Results (Benjamin, Reading, Massachusetts, 1969).Google Scholar
  318. 318.
    D. Ruelle,Thermodynamic Formalism (Addison-Wesley, Reading, Massachusetts, 1978).Google Scholar
  319. 319.
    J. Salas, Private communication (1991).Google Scholar
  320. 320.
    S. Sarbach and M. E. Fisher, Tricritical scaling in the spherical model limit,J. Appl. Phys. 49:1350–1352 (1978).Google Scholar
  321. 321.
    S. Sarbach and M. E. Fisher, Tricriticality and the failure of scaling in the manycomponent limit,Phys. Rev. B 18:2350–2363 (1978).Google Scholar
  322. 322.
    S. Sarbach and M. E. Fisher, Tricritical coexistence in three dimensions: The multicomponent limit,Phys. Rev. B 20:2797–2817 (1979).Google Scholar
  323. 323.
    H. H. Schaefer,Topological Vector Spaces (Springer-Verlag, Berlin, 1980).Google Scholar
  324. 324.
    A. G. Schlijper, Tiling problems and undecidability in the cluster variation method,J. Stat. Phys. 50:689–714 (1988).Google Scholar
  325. 325.
    W. Schmidt,Diophantine Approximation, Lecture Notes in Mathematics #785 (Springer-Verlag, Berlin, 1980).Google Scholar
  326. 326.
    R. H. Schonmann, Second order large deviation estimates for ferromagnetic systems in the phase coexistence region,Commun. Math. Phys. 112:409–422 (1987).Google Scholar
  327. 327.
    R. H. Schonmann, Projections of Gibbs measures may be non-Gibbsian,Commun. Math. Phys. 124:1–7 (1989).Google Scholar
  328. 328.
    R. Schrader, Ground states in classical lattice systems with hard core,Commun. Math. Phys. 16:247–264 (1970).Google Scholar
  329. 329.
    L. Schwartz,Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures (Tata Institute of Fundamental Research and Oxford University Press, Oxford, 1973).Google Scholar
  330. 330.
    S. H. Shenker and J. Tobochnik, Monte Carlo renormalization-group analysis of the classical Heisenberg model in two dimensions,Phys. Rev. B 22:4462–4472 (1980).Google Scholar
  331. 331.
    S. B. Shlosman, Uniqueness and half-space nonuniqueness of Gibbs states in Czech models,Theor. Math. Phys. 66:284–293 (1986).Google Scholar
  332. 332.
    S. B. Shlosman, Gaussian behavior of the critical Ising model in dimensiond>4,Sov. Phys. Doklady 33:905–906 (1988).Google Scholar
  333. 333.
    S. B. Shlosman, Relations among the cumulants of random fields with attraction,Theor. Prob. Appl. 33:645–655 (1989).Google Scholar
  334. 334.
    S. D. Silvey,Statistical Inference (Chapman and Hall, London, 1975).Google Scholar
  335. 335.
    B. Simon and A. D. Sokal, Rigorous entropy-energy arguments,J. Stat. Phys. 25:679–694 (1981); Addendum,J. Stat. Phys. 29:155 (1982).Google Scholar
  336. 336.
    Ya. G. Sinai, Self-similar probability distributions,Theor. Prob. Appl. 21:64–80 (1976).Google Scholar
  337. 337.
    Ya. G. Sinai,Theory of Phase Transitions: Rigorous Results (Pergamon Press, Oxford, 1982).Google Scholar
  338. 338.
    J. Slawny, Low-temperature properties of classical lattice systems: Phase transitions and phase diagrams, inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1985).Google Scholar
  339. 339.
    A. D. Sokal, Existence of compatible families of proper regular conditional probabilities,Z. Wahrsch. verw. Geb. 56:537–548 (1981).Google Scholar
  340. 340.
    A. D. Sokal, Unpublished (1982).Google Scholar
  341. 341.
    A. D. Sokal, More surprises in the general theory of lattice systems,Commun. Math. Phys. 86:327–336 (1982).Google Scholar
  342. 342.
    A. D. Sokal, Subadditive set functions on a discrete amenable group, Unpublished manuscript (1984).Google Scholar
  343. 343.
    A. Stella, Singularities in renormalization group transformations,Physica 108A:211–220 (1981).Google Scholar
  344. 344.
    K. Subbarao, Renormalization group for Ising spins on a finite lattice,Phys. Rev. B 11:1165–1168 (1975).Google Scholar
  345. 345.
    W. G. Sullivan, Potentials for almost Markovian random fields,Commun. Math. Phys. 33:61–74 (1973).Google Scholar
  346. 346.
    R. H. Swendsen, Monte Carlo renormalization, inReal-Space Renormalization, T. W. Burkhardt and J. M. J. van Leeuwen, eds. (Springer-Verlag, New York, 1982), pp. 57–86.Google Scholar
  347. 347.
    R. H. Swendsen, Monte-Carlo renormalization group, inPhase Transitions (Cargèse 1980), M. Lévy, J.-C. LeGuillou, and J. Zinn-Justin, eds. (Plenum Press, New York, 1982), pp. 395–422.Google Scholar
  348. 348.
    R. H. Swendsen, Monte Carlo calculation of renormalized coupling parameters. I.d=2 Ising model,Phys. Rev. B 30:3866–3874 (1984).Google Scholar
  349. 349.
    R. H. Swendsen and J.-S. Wang, Non-universal critical dynamics in Monte Carlo simulations,Phys. Rev. Lett. 58:86–88 (1987).Google Scholar
  350. 350.
    G. S. Sylvester, Inequalities for continuous spin Ising ferromagnets,J. Stat. Phys. 15:327–341 (1976).Google Scholar
  351. 351.
    I. Syozi, Transformation of Ising models, inPhase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).Google Scholar
  352. 352.
    P. Tannery, Review of H. Konen, Geschichte der Gleichungt 2Du 2=1,Bull. Sci. Math. 27:47–51 (1903).Google Scholar
  353. 353.
    Théon de Smyrne,Exposition des Connaissances Mathématiques Utiles pour la Lecture de Platon, [translated by J. Dupuis] (Hachette, Paris, 1892), pp. 71–75.Google Scholar
  354. 354.
    C. J. Thompson,Mathematical Statistical Mechanics (Princeton University Press, Princeton, New Jersey, 1979).Google Scholar
  355. 355.
    C. J. Thompson,Classical Equilibrium Statistical Mechanics (Clarendon Press, Oxford, 1988).Google Scholar
  356. 356.
    A. L. Toom, Stable and attractive trajectories in multicomponent systems, inMulticomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai, eds. (Marcel Dekker, New York, 1980), pp. 549–575.Google Scholar
  357. 357.
    H. van Beijeren, Interface sharpness in the Ising system,Commun. Math. Phys. 40:1–6 (1975).Google Scholar
  358. 358.
    A. C. D. van Enter, A note on the stability of phase diagrams in lattice systems,Commun. Math. Phys. 79:25–32 (1981).Google Scholar
  359. 359.
    A. C. D. van Enter, Instability of phase diagrams for a class of “irrelevant” perturbations,Phys. Rev. B 26:1336–1339 (1982).Google Scholar
  360. 360.
    A. C. D. van Enter and R. Fernández, A remark on different norms and analyticity for many-particle interactions,J. Stat. Phys. 56:965–972 (1989).Google Scholar
  361. 361.
    A. C. D. van Enter, R. Fernández, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations,Nucl. Phys. B (Proc. Suppl.) 20:48–52 (1991).Google Scholar
  362. 362.
    A. C. D. van Enter, R. Fernández, and A. D. Sokal, Renormalization transformations in the vicinity of first-order phase transitions: What can and cannot go wrong,Phys. Rev. Lett. 66:3253–3256 (1991).Google Scholar
  363. 363.
    A. C. D. van Enter, R. Fernández, and A. D. Sokal, Non-Gibbsian states, inProceedings of the 1992 Prague Workshop on Phase Transitions, R. Kotecký, ed. (World Scientific, Singapore, 1993).Google Scholar
  364. 364.
    A. C. D. van Enter, R. Fernández, and A. D. Sokal, Non-Gibbsian states for renormalization-group transformations and beyond, inProceedings of the NATO Advanced Studies Institute Workshop on Cellular Automata and Cooperative Systems [Les Houches 1992, N. Boccara, E. Goles, S. Martinez, and P. Picco, eds. (Kluwer, Dordrecht, 1993).Google Scholar
  365. 365.
    A. C. D. van Enter and J. Miekisz, Breaking of periodicity at positive temperatures,Commun. Math. Phys. 134:647–651 (1990).Google Scholar
  366. 366.
    J. M. J. van Leeuwen, Singularities in the critical surface and universality for Ising-like spin systems,Phys. Rev. Lett. 34:1056–1058 (1975).Google Scholar
  367. 367.
    V. S. Varadarajan, Measures on topological spaces [in Russian],Mat. Sbornik N.S. 55(97):35–100 (1961) [English translation],Am. Math. Soc. Transl. Ser. 2 48:161–228 (1965)].Google Scholar
  368. 368.
    S. R. S. Varadhan, Private communication (1984).Google Scholar
  369. 369.
    S. R. S. Varadhan,Large Deviations and Applications (SIAM, Philadelphia, Pennsylvania, 1984).Google Scholar
  370. 370.
    J. Voigt, Stochastic operators, information and entropy,Commun. Math. Phys. 81:31–38 (1981).Google Scholar
  371. 371.
    J.-S. Wang and J. L. Lebowitz, Phase transitions and universality in nonequilibrium steady states of stochastic Ising models,J. Stat. Phys. 51:893–906 (1988).Google Scholar
  372. 372.
    F. J. Wegner and E. K. Riedel, Logarithmic corrections to the molecular-field behavior of critical and tricritical systems,Phys. Rev. B 7:248–256 (1973).Google Scholar
  373. 373.
    A. S. Wightman, Convexity and the notion of equilibrium state in thermodynamics and statistical mechanics. Introduction to R. B. Israel,Convexity in the Theory of Lattice Gases (Princeton University Press, Princeton, New Jersey, 1979).Google Scholar
  374. 374.
    K. G. Wilson, The renormalization group: Critical phenomena and the Kondo problem,Rev. Mod. Phys. 47:773–840 (1975).Google Scholar
  375. 375.
    K. G. Wilson and J. Kogut, The renormalization group and the ε-expansion,Phys. Rep. 12C:75–200 (1974).Google Scholar
  376. 376.
    M. Zahradník, An alternate version of Pirogov-Sinai theory,Commun. Math. Phys. 93:559–581 (1984).Google Scholar
  377. 377.
    M. Zahradník, Low temperature continuous spin Gibbs states on a lattice and the interfaces between them—A Pirogov-Sinai type approach, inStatistical Mechanics and Field Theory: Mathematical Aspects (Proceedings, Groningen 1985), Lecture Notes in Physics #257, T. C. Dorlas, N. M. Hugenholtz, and M. Winnink, eds. (Springer-Verlag, Berlin, 1986).Google Scholar
  378. 378.
    M. Zahradník, Analyticity of low-temperature phase diagrams of lattice spin models,J. Stat. Phys. 47:725–755 (1987).Google Scholar
  379. 379.
    M. Zahradník, Phase diagrams of lattice spin models. Cours de Troisième Cycle de la Physique en Suisse Romande, Lausanne (May 1987).Google Scholar
  380. 380.
    M. Zahradník, Low temperature phase diagrams of lattice models with random impurities, Preprint (1988).Google Scholar
  381. 381.
    M. Zahradník, Private communication (1990).Google Scholar
  382. 382.
    F. Igloi and C. Vanderzande, Renormalisation group study of the (2 + 1) dimensional Potts model,Physica A135:347–358 (1986).Google Scholar
  383. 383.
    K. A. Ribet, Wiles proves Taniyama's conjecture: Fermat's last theorem follows,Notices Amer. Math. Soc. 40:575–576 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Aernout C. D. van Enter
    • 1
  • Roberto Fernández
    • 2
  • Alan D. Sokal
    • 3
  1. 1.Institute for Theoretical PhysicsRijksuniversiteit GroningenAG GroningenThe Netherlands
  2. 2.Institut de Physique ThéoriqueEcole Polytechnique Fédérale de Lausanne, PHB-EcublensLausanneSwitzerland
  3. 3.Department of PhysicsNew York UniversityNew York

Personalised recommendations