Journal of Dynamics and Differential Equations

, Volume 3, Issue 2, pp 179–197

Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation

  • M. S. Jolly
  • I. G. Kevrekidis
  • E. S. Titi


It has been observed, in earlier computations of bifurcation diagrams for dissipative partial differential equations, that the use of certain explicit approximate inertial forms can give rise to numerical artifacts such as spurious turning points and inaccurate solution branches. These shortcomings were attributed to a lack of dissipation in the forms used. We show analytically and verify numerically that with an appropriate adjustment we can eliminate these numerical artifacts. The motivation for this adjustment is to enforce dissipation, while maintaining the same order of approximation. We demonstrate with computations that the most natural remedy, namely, preparation of the equation, can be highly sensitive to assumptions on the size of the absorbing ball. In addition, we show that certain implicit forms are dissipative without any adjustment. As an illustrative example we use here the Kuramoto-Sivashinsky equation.

Key words

Inertial manifold dissipation Kuramoto-Sivashinsky non-linear Galerkin method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armbruster, D., Guckenheimer, J., and Holmes, P. J. (1988). Heteroclinic cycles and modulated traveling waves in systems with O(2) symmetry.Physica 29D, 257–282.Google Scholar
  2. Armbruster, D., Guckenheimer, J., and Holmes, P. J. (1990). Kuramoto-Sivashinsky dynamics on the center-unstable manifold.SIAM J. Appl. Math. 49, 676–691.Google Scholar
  3. Beris, A. N., Armstrong, R. C., and Brown, R. A. (1984). Finite element calculation of viscoelastic flow in a journal bearing. I. small eccentricities.J. Non-Newton. Fluid Mech. 16, 141–172.Google Scholar
  4. Beris, N. A., Armstrong, R. C., and Brown, R. A. (1987). Spectral/finite element calculations of the flow of a Maxwell fluid between eccentric rotating cylinders.J. Non-Newton. Fluid Mech. 22, 129–167.Google Scholar
  5. Chang, H.-C. (1986). Traveling waves on fluid interfaces: Normal form analysis of the Kuramoto-Sivashinsky equation.Phys. Fluids 29, 3142–3147.Google Scholar
  6. Channell, P. J., and Scovel, C. (1990). Integration of Hamiltonian systems.Nonlinearily 3, 231–259.Google Scholar
  7. Chen, L.-H., and Chang, H.-C. (1986). Nonlinear waves on thin film surfaces. II. Bifurcation analyses of the long-wave equation.Chem. Eng. Sci. 41, 2477–2486.Google Scholar
  8. Constantin, P., and Foias, C. (1988).Navier-Stokes Equations, University of Chicago Press, Chicago.Google Scholar
  9. Constantin, P., Foias, C., Nicolaenko, B., and Témam, R. (1988). Integral manifolds and inertial manifolds for dissipative partial differential equations.Appl. Math. Sci. No. 70, Springer-Verlag, New York.Google Scholar
  10. Constantin, P., Foias, C., Nicolaenko, B., and Témam, R. (1989). Spectral barriers and inertial manifolds for dissipative partial differential equations.J. Dynam. Different. Eq. 1, 45–73.Google Scholar
  11. Demengel, F., and Ghidaglia, J.-M. (1988). Discrétisation en temps et variétés inertielles pour des équations d'évolution aux dérivées partielles nonlinéaire.C.R. Acad. Sci. Sér. I Paris 307, 453–458.Google Scholar
  12. Doedel, E. J. (1981). AUTO: A program for the bifurcation analysis of autonomous systems.Cong. Num. 30, 265–285.Google Scholar
  13. De Vogelaére, R. (1956). Methods of integration which preserve the contact transformation property of the Hamiltonian equations, Dept. Math., University of Notre Dame Report No. 4.Google Scholar
  14. Fabes, E., Luskin, M., and Sell, G. R. (1988). Construction of inertial manifolds by elliptic regularization. IMA Preprint No. 459.Google Scholar
  15. Foias, C., and Témam, R. (1988). The algebraic approximation of attractors: The finite dimensional case.Physica D 32, 163–182.Google Scholar
  16. Foias, C., Jolly, M. S., Kevrekidis, I. G., Sell, G. R., and Titi, E. S. (1988a). On the computation of inertial manifolds.Phys. Lett. A 131, 433–436.Google Scholar
  17. Foias, C., Manley, O., and Témam, R. (1988b). Modelling of the interaction of small and large eddies in two dimensional turbulent flows.Math. Model. Num. Anal. 22, 93–118.Google Scholar
  18. Foias, C., Nicolaenko, B., Sell, G. R., and Témam, R. (1988c). Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimensions.J. Math. Pure Appl. 67, 197–226.Google Scholar
  19. Foias, C., Sell, G. R., and Témam, R. (1988d). Inertial manifolds for nonlinear evolutionary equations.J. Different. Eq. 73, 309–353.Google Scholar
  20. Foias, C., Sell, G. R., and Titi, E. S. (1989). Exponential tracking and approximation of inertial manifolds for dissipative equations.J. Dynam. Different. Eq. 1, 199–224.Google Scholar
  21. Foias, C., Manley, O., and Témam, R. (1991). Approximate inertial manifolds and effective viscosity in turbulent flows.Phys. of Fluids A, (in press).Google Scholar
  22. Foias, C., and Titi, E. S. (1991). Determining nodes, finite difference schemes and inertial manifolds.Nonlinearity 4, 135–153.Google Scholar
  23. Graham, M., Steen, P., and Titi, E. S. (1989). Computations and Analysis for the Bénard convection problem in porous medium using approximate inertial manifolds (in preparation).Google Scholar
  24. Green, J. M., and Kim, J.-S. (1988). The steady states of the Kuramoto-Sivashinsky equation.Physica 33D, 99–120.Google Scholar
  25. Holm, D. D., Kimura, Y., and Scovel, C. (1990). Lagrangian particle kinematics in three-dimensional convection. InNonlinear Structures in Physical Systems, L. Lam and H. C. Morris, (eds.), Springer-Verlag, New York.Google Scholar
  26. Hyman, J. M., and Nicolaenko, B. (1986). The Kuramoto-Sivashinsky equation: A bridge between PDEs and dynamical systems.Physica 18D, 113–126.Google Scholar
  27. Hyman, J. M., Nicolaenko, B., and Zaleski, S. (1986). Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces.Physica 23D, 265–292.Google Scholar
  28. Jolly, M. S., Kevrekidis, I. G., and Titi, E. S. (1990). Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations.Physica 44D, 38–60.Google Scholar
  29. Kevrekidis, I. G., Nicolaenko, B., and Scovel, C. (1989). Back in the saddle again: A computer assisted study of the Kuramoto-Sivashinsky equation.SIAM J. Appl. Math. 50, 760–790.Google Scholar
  30. LaQuey, R. E., Mahajan, S. M., Rutherford, P. H., and Tang, W. M. (1975). Nonlinear saturation of the trapped-ion mode.Phys. Rev. Lett. 34, 391–394.Google Scholar
  31. Marion, M. (1989a). Approximate inertial manifolds for the pattern formation Cahn-Hilliard equations.Math. Model. Numer. Anal. 23, 463–488.Google Scholar
  32. Marion, M. (1989b). Approximate inertial manifolds for reaction diffusion equations in high space dimension.J. Dynam. Different. Eq. 1, 245–267.Google Scholar
  33. Marion, M., and Témam, R. (1989). Nonlinear Galerkin methods.SIAM J. Numer. Anal. 26, 1139–1157.Google Scholar
  34. Michelson, D. (1986). Steady solutions of the Kuramoto-Sivashinsky equation.Physica 19D, 89–111.Google Scholar
  35. Nicolaenko, B., Scheurer, B., and Témam, R. (1985). Some global dynamical properties of the Kuramoto-Sivashinsky equation: Nonlinear stability and attractors.Physica 16D, 155–183.Google Scholar
  36. Rosier, C. (1989). Thesis, Université Paris-Sud, Orsay.Google Scholar
  37. Scovel, C., Kevrekidis, I. G., and Nicolaenko, B. (1988). Scaling laws and the prediction of bifurcations in systems modeling pattern formation.Phys. Lett. A 130, 73–80.Google Scholar
  38. Sell, G. R. (1989). Approximation dynamics: Hyperbolic sets and inertial manifolds. University of Minnesota Supercomputer Institute, Preprint No. 89/39.Google Scholar
  39. Témam, R. (1988a). Variétés inertielles approximatives pour les équations de Navier-Stokes bidimensionnelles.C.R. Acad. Sci. Paris Ser. II 306, 399–402.Google Scholar
  40. Témam, R. (1988b).Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York.Google Scholar
  41. Témam, R. (1988c). Induced trajectories and approximate inertial manifolds.Math. Model. Numer. Anal. 23, 541–561.Google Scholar
  42. Témam, R. (1989). Dynamical systems, turbulence, and numerical solution of the Navier-Stokes equations. InProc. Eleventh International Conference on Numerical Methods in Fluid Dynamics, D. L. Dowoyer and R. Voigt, (eds.), Lecture Notes in Physics, Springer-Verlag, Berlin, New York.Google Scholar
  43. Thyagaraja, A., and Haas, F. A. (1985). Representation of volume-preserving maps induced by solenoidal fields.Phys. Fluids 28, 1005.Google Scholar
  44. Titi, E. S. (1988). Une variété approximante de l'attracteur universel des équations de Navier-Stokes, non linéaire, de dimension finie.C.R. Acad. Sci. Sér. I Paris 307, 383–385.Google Scholar
  45. Titi, E. S. (1990). On approximate inertial manifolds to the Navier-Stokes equations.J. Math. Anal. Appl. 149, 540–557.Google Scholar
  46. Yeh, P. M., Kim-E, M. E., Armstrong, R. C., and Brown, R. A. (1984). Multiple Solutions in the calculation of axisymmetric contraction flow in an upper converted Maxwell fluid.J. Non-Newton. Fluid Mech. 16, 173–194.Google Scholar
  47. Zhong, G., and Marsden, J. E. (1988). Eie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators.Phys. Lett. A 133, 134–139.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • M. S. Jolly
    • 1
    • 4
  • I. G. Kevrekidis
    • 1
    • 2
  • E. S. Titi
    • 3
    • 5
  1. 1.Program in Applied and Computational MathematicsPrinceton UniversityPrinceton
  2. 2.Department of Chemical EngineeringPrinceton UniversityPrinceton
  3. 3.Mathematical Sciences InstituteCornell UniversityIthaca
  4. 4.Department of MathematicsIndiana UniversityBloomington
  5. 5.Department of MathematicsUniversity of CaliforniaIrvine

Personalised recommendations