Water, Air, and Soil Pollution

, Volume 12, Issue 2, pp 247–254 | Cite as

The practice of leaching boron and soluble salts from fly ash-amended soils

  • H. T. Phung
  • H. V. Lam
  • A. L. Page
  • L. J. Lund


The leachability of B and salts from two fly ash-amended soils was conducted in a column leaching experiment. Fly ash was applied to the surface 3 cm of a Baywood (acid) sand and an Arizo (calcareous) sandy, loam at 5% by weight; the columns were continously leached with Colorado River water at two different pH's. Boron from fly ash was solubilized more readily in the Baywood than in the Arizo soil. Addition of fly ash increased B levels in the leachates from 0.25 to 2.35 μg ml−1 (Baywood) and 0.93 μg ml−1 (Arizo). Acidified leaching water had no significant effect on B leaching patterns but resulted in leaching higher soluble salts. Approximately 348 and 161 cm of water for the Arizo and the Baywood soils respectively, would be required to reduce the B concentration below a critical limit for B sensitive crops. It is suggested that crops planted when fly ash is applied for disposal/recycling on land should be both salt and B tolerant.


Calcareous Boron Leaching River Water Soluble Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cox, J. A., Lundquist, G. L., Przyjazny, A. and Schumulback, C. D.: 1978,Environ. Sci. Technol. 12, 722.Google Scholar
  2. Dible, W. T., Truog, E. and Berger, K. D.: 1954.Anal. Chem. 26, 418.Google Scholar
  3. Elseewi, A. A., Bingham, F. T., and Page, A. L.: 1978, Proc ofEnvironmental Chemistry and Recycling Processes, Adriano, D. C. and Brisbin, I. L. (eds.), pp. 568–581. Technical Information Center, U.S. Dept. Energy.Google Scholar
  4. Gal, M., Page, A. L., and Straughan I. I.: 1978,Agronomy Abst. p. 25.Google Scholar
  5. Gupta, U. C.: 1972,Soil. Sci. Amer. Proc 36, 332.Google Scholar
  6. Hodgson, D. R., and Holliday, R.: 1966,Chem. Ind.,1966, 785.Google Scholar
  7. Jackson, M. L.: 1958,Soil Chemical Analysis, Prentice Hall, Inc., Englewood Cliffs, N.J.Google Scholar
  8. Jones, L. H. and Lewis, A. V.: 1960,Nature 185, 404.Google Scholar
  9. Mulford, F. R. and Martens, D. C.: 1971,Soil, Sci. Soc. Amer. Proc. 35, 296.Google Scholar
  10. Page, A. L., Elseewiz, A. A., and Straughan, I.: 1979,Residue Review (in press).Google Scholar
  11. Plank, C. O. and Martens, D. C.: 1974,Soil Sci. Soc. Amer. Proc. 38, 974.Google Scholar
  12. Rhoades, J. D., Ingvalson, R. D., and Hatcher, J. T.: 1970,Soil Sci. Soc. Amer. Proc. 34, 871.Google Scholar
  13. Richards, L. A. (ed.): 1954,Diagnosis and Improvement of Saline and Alkali Soils, Handbook No. 60, U.S. Dept. of Agri.Google Scholar
  14. Ruch, R. R., Gluskoter, H. J., and Shrimp N. F.: 1974,Environ. Geol. Notes, No. 72, Illinois St. Geological Survey.Google Scholar
  15. Scanlon, D. H. and Duggan, J. E.: 1979,Environ. Sci. Technol. 13, 311.Google Scholar
  16. U.S. Environmental Protection Agency: 1976,Quality Criteria for Water, EPA-440/9-76-023.Google Scholar

Copyright information

© D. Reidel Publishing Co. 1979

Authors and Affiliations

  • H. T. Phung
    • 1
  • H. V. Lam
    • 1
  • A. L. Page
    • 2
  • L. J. Lund
    • 2
  1. 1.SCS EngineersLong BeachUSA
  2. 2.Soil ScienceUniversity of CaliforniaRiversideUSA

Personalised recommendations