Oxidation of Metals

, Volume 43, Issue 3–4, pp 185–215 | Cite as

Oxidation behavior of copper at high temperatures under two different modes of direct-current applications

  • S. K. Roy
  • V. Ananth
  • S. K. Bose
Article

Abstract

Oxidation kinetics of copper in the temperature range of 973–1173 K atPO2=21.27 kPa exhibit enhancement and deceleration in the rates with changing polarity compared to normal oxidation under interrupted mode of directcurrent application. These conditions are achieved by connecting the oxidizing copper covered with an initially formed thin oxide film to the positive and negative terminal of a dc source, respectively. However, the influence of direction of the current is found to be opposite under uninterrupted mode of impressed current flow in the same temperature range. The effect of short-circuiting the metal to the outer oxide/air interface on the reaction kinetics is also reported. The rate of oxide-scale growth under normal condition, and two different modes of current applications as well as with shorting circuitry attachment conform to the parabolic growth law. The results pertaining to the two different modes of impressed current have been discussed considering both the phenomena of electrolysis of the oxide electrolyte and the polarization at the two phase boundaries. The enhancement and the reduction in rates under uninterrupted impressed current conditions are explained on the basis of increased and decreased average defect concentrations, respectively, within the oxide layer. The acceleration and deceleration in the rates under interrupted mode of current flow have been explained in the light of sustenance of a steeper and flatter electrochemical-potential gradient of defects, respectively, across the growing-oxide layer. The possible different responses of the metal/oxide and oxide/air interfaces to the impressed current brought into play by two different modes of current application, have enabled to display a better insight on the mechanistic aspects of scale growth under the influence of an externally applied current.

Key Words

copper oxidation direct current uninterrupted mode interrupted mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Jorgensen,J. Chem. Phys. 37, 874 (1962).Google Scholar
  2. 2.
    P. J. Jorgensen,J. Electrochem. Soc. 110, 461 (1963).Google Scholar
  3. 3.
    P. J. Jorgensen,Oxidation of Metals and Alloys, D. L. Douglass, ed. (ASM, Metals Park, OH, 1971), p. 157.Google Scholar
  4. 4.
    J. R. Anderson and I. M. Ritchie,Proc. Roy. Soc. A299, 371 (1967).Google Scholar
  5. 5.
    I. M. Ritchie, G. H. Scott, and P. J. Fensham,Surf. Sci. 19, 230 (1970).Google Scholar
  6. 6.
    G. L. Hunt and I. M. Ritchie,Oxid. Met. 2, 361 (1970).Google Scholar
  7. 7.
    D. H. Bradhurst, J. E. Draley, and C. J. Van Druen,J. Electrochem. Soc. 112, 1171 (1965).Google Scholar
  8. 8.
    F. Schein, B. LeBoucher, and P. Lacombe,Compt. Rend. 252, 4157 (1961).Google Scholar
  9. 9.
    F. Schein, B. LeBoucher, and P. Lacombe,Corros. Anti-corros. 10, 401 (1962).Google Scholar
  10. 10.
    P. K. Krishnamurthy and S. C. Sircar,Acta Met. 16, 1461 (1968).Google Scholar
  11. 11.
    S. K. Roy, P. K. Krishnamurthy, and S. C. Sircar,Acta Met. 18, 519 (1970).Google Scholar
  12. 12.
    S. K. Roy and S. C. Sircar,J. Electrochem. Soc. (India) 30, 179 (1981).Google Scholar
  13. 13.
    V. Ananth, S. K. Bose, and S. C. Sircar,Scripta Met. 14, 687 (1980).Google Scholar
  14. 14.
    V. Ananth, S. C. Sircar, and S. K. Bose, inProc. Int. Conf. Corrosion Science and Technology (ICMS-85), S. K. Bose and U. K. Chatterjee, eds. (Department of Metallurgical Engineering, I.I.T., Kharagpur, India, 1985), p. 320.Google Scholar
  15. 15.
    V. Ananth, S. C. Sircar, and S. K. Bose,Trans. Jpn. Inst. Met. 26, 123 (1985).Google Scholar
  16. 16.
    R. N. Patnaik, S. K. Bose, and S. C. Sircar,Br. Corros. J. 12, 57 (1977).Google Scholar
  17. 17.
    J. R. Anderson and I. M. Ritchie,Proc. Roy. Soc. A299, 354 (1967).Google Scholar
  18. 18.
    A. T. Fromhold,J. Phys. Chem. Solids 24, 1081 (1963).Google Scholar
  19. 19.
    A. T. Fromhold,J. Phys. Chem. Solids 33, 95 (1972).Google Scholar
  20. 20.
    A. T. Fromhold,Theory of Metal Oxidation, Vols. I, II (North-Holland, Amsterdam, 1976, 1980).Google Scholar
  21. 21.
    D. O. Raleigh,J. Electrochem. Soc. 113, 782 (1966).Google Scholar
  22. 22.
    F. A. Kröger, The Chemistry of Imperfect Crystals, Vol. 3, 2nd ed. (North-Holland, Amsterdam, 1974), p. 89.Google Scholar
  23. 23.
    P. Kofstad,High Temperature Oxidation of Metals (Wiley, New York, 1966), p. 135.Google Scholar
  24. 24.
    P. Kofstad,High Temperature Corrosion (Elsevier, London, 1988), p. 199.Google Scholar
  25. 25.
    V. Ananth, Influence of Direct Current and Short-Circuiting on the Oxidation of Copper and Iron and Reduction of Wüstite at High Temperatures, Ph.D. Thesis, I.I.T., Kharagpur, India (1985).Google Scholar
  26. 26.
    S. Mrowec and A. Stoklosa,Oxid. Met. 3 291 (1971).Google Scholar
  27. 27.
    G. Valensi,Rev. Metall. 45, 10 (1948).Google Scholar
  28. 28.
    P. Kofstad,Nature 179, 1382 (1957).Google Scholar
  29. 29.
    D. W. Bridges, J. P. Baur, G. S. Baur, and W. M. Fussell,J. Electrochem. Soc. 103, 475 (1956).Google Scholar
  30. 30.
    I. Czerski, S. Mrowec, and T. Werber,Roczniki Chem. 38, 643 (1964).Google Scholar
  31. 31.
    R. F. Tylecote,J. Inst. Metals 78, 259 (1950);81, 681 (1953).Google Scholar
  32. 32.
    W. J. Moore and B. Selikson,J. Chem. Phys. 19, 1539 (1951),20, 927 (1952).Google Scholar
  33. 33.
    W. J. Tomlinson and J. Yates,J. Phys. Chem. Solids 38, 1205 (1977).Google Scholar
  34. 34.
    S. K. Roy, S. K. Bose, and S. C. Sircar,Oxid. Met. 35, 1 (1991).Google Scholar
  35. 35.
    C. Wagner and K. Grünewald,Z. Phys. Chem. 40B, 455 (1938).Google Scholar
  36. 36.
    S. Mrowec, A. Stoklosa, and K. Godlewski,Cryst. Lattice Defects 5, 239 (1974).Google Scholar
  37. 37.
    J. Xue and R. Dieckmann,J. Phys. Chem. Solids 51, 1263 (1990).Google Scholar
  38. 38.
    O. Kubaschewski and C. B. Alcock,Metallurgical Thermochemistry 5th ed. (with corrections), (Pergamon Press, 1989), p. 379.Google Scholar
  39. 39.
    W. J. Moore and M. O'Keeffe,J. Chem. Phys. 35, 1324 (1961).Google Scholar
  40. 40.
    R. S. Toth, R. Kilkson, and D. Trivich,Phys. Rev. 122, 482 (1961).Google Scholar
  41. 41.
    K. Fueki and J. B. Wagner,J Electrochem. Soc. 112, 384 (1965).Google Scholar
  42. 42.
    F. Pettit,J. Electrochem. Soc. 113, 1250 (1966).Google Scholar
  43. 43.
    S. Mrowec,Defects and Diffusion in Solids—An Introduction (Elsevier, 1980), p. 378.Google Scholar
  44. 44.
    C. Wagner,Atom Movements (ASM, Cleveland, OH, 1951), p. 151.Google Scholar
  45. 45.
    P. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley, 1972), p. 330.Google Scholar
  46. 46.
    S. K. Mitra, Influence of Short-Circuiting and Static Charge Supply on the Oxidation Kinetics of Cu, Cu−Li and Cu−Cr Systems in the Temperature Range of 523 K–1173 K, Ph.D. thesis, I.I.T. Kharagpur, India (1991).Google Scholar
  47. 47.
    H. K. Eriksen and K. Hauffe, 5th Scand. Corros. Cong, Copenhangen, 1968, p. 38-I.Google Scholar
  48. 48.
    N. F. Mott and R. W. Gurney,Electronic Processes in Ionic Crystals, 2nd ed. (Dover, New York, 1964), p. 178.Google Scholar
  49. 49.
    O. Kubaschewski and B. E. Hopkins,Oxidation of Metals and Alloys (Butterworths, London, 1967), p. 50.Google Scholar
  50. 50.
    Ref. 49, p. 105.Google Scholar
  51. 51.
    Ref. 22, p. 102.Google Scholar
  52. 52.
    K. Hauffe and P. Kofstad,Z. Elektrochem. 59, 399 (1955).Google Scholar
  53. 53.
    K. Hauffe,Oxidation of Metals (Plenum, New York, 1965), p. 165.Google Scholar
  54. 54.
    J. A. Leroux and E. Raub,Z. Anorg. Allgem. Chem. 188, 205 (1930).Google Scholar
  55. 55.
    Ref. 45 P. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley, 1972), p. 332.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • S. K. Roy
    • 1
  • V. Ananth
    • 1
  • S. K. Bose
    • 1
  1. 1.Metallurgical and Materials Engineering DepartmentIndian Institute of TechnologyKharagpurIndia

Personalised recommendations