Oxidation of Metals

, Volume 46, Issue 1–2, pp 73–107 | Cite as

Effect of short-circuiting on the oxidation kinetics of copper and its doped varieties in the temperature range of 523–1073 K

  • S. K. Bose
  • S. K. Mitra
  • S. K. Roy


The influence of shorting circuitry attachment between metal-oxide and oxideoxygen interfaces on the oxidation kinetics of copper, lithium-doped copper (Li: 400 ppm), and chromium-doped copper (Cr: 12 ppm) have been studied in dry air\((P_{O_2 } = 21.27kPa)\) in the temperature range of 523–1073 K. Oxide film or scale growth under short-circuiting as well as under normal oxidation conditions conforms to the parabolic rate law. The oxidation kinetics under short-circuiting resulted in decreased rates for Cu and Li-doped Cu up to a temperature of 773 K, while Cr-doped Cu exhibited an enhancement in rate compared to its normal oxidation in the same temperature range. However, above 873 K, all three systems under shorting circuitry attachment exhibited enhanced rates compared to their normal oxidation rates in conformity to the existing theoretical model. Use of additional resistances in series in the outer short-circuit Pt path have clearly established that below 773 K Mott's fieldinduced migration plays the most important role, while at elevated temperatures Wagner's electrochemical potential-gradient factor acts as the main driving force in the scale-growth process. The results have been interpreted on the basis of average defect concentration, the electrochemical potential gradient, electrical field gradient, and transport coefficient in the Cu2O layer.

Key words

oxidation copper Li-doped copper Cr-doped copper short-circuiting Mott's parabola Wagner's parabola 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. A. Kröger,The Chemistry of Imperfect Crystals,Vol. 3 (North-Holland, Amsterdam, 1974), p. 66.Google Scholar
  2. 2.
    W. H. Brattain,Rev. Modern Phys. 21, 203 (1951).Google Scholar
  3. 3.
    H. Dunwald, K. Hauffe, and C. Wagner,Z. Phys. Chem. 14B, 467 (1932).Google Scholar
  4. 4.
    H. Bloem,Philips Res. Repts. 13, 167 (1958).Google Scholar
  5. 5.
    S. Mrowec,Defects and Diffusion in Solids—An Introduction (Elsevier, Warszawa, 1980), p. 191.Google Scholar
  6. 6.
    J. Bardeen, W. H. Brattain, and W. Schokley,J. Chem. Phys. 14, 714 (1946).Google Scholar
  7. 7.
    P. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley-Interscience, 1972), p. 328.Google Scholar
  8. 8.
    S. Mrowec and A. Stoklosa,Oxid. Met. 3, 291 (1971).Google Scholar
  9. 9.
    S. Mrowec, A. Stoklosa, and K. Godlewski,Crystal Lattice Defects 5, 239 (1971).Google Scholar
  10. 10.
    R. S. Toth, R. Klikson, and D. Trivich,Phys. Rev. 122, 482 (1961).Google Scholar
  11. 11.
    M. O'Keefe and W. J. Moore,J. Chem. Phys. 36, 3009 (1962).Google Scholar
  12. 12.
    W. J. Tomlinson and J. Yates,J. Phys. Chem. Solids 38, 1205 (1977).Google Scholar
  13. 13.
    V. Ananth, S. C. Bose, and S. C. Sircar,Scripta Met. 14, 687 (1980).Google Scholar
  14. 14.
    V. Ananth, S. C. Sircar, and S. K. Bose,Proc. Int. Conf. Corros. Sci. Tech. (ICMS '85), Calcutta S. K. Bose and U. K. Chatterjee eds. (Dept. of Met. Eng., I.I.T., Kharagpur, India, 1985), p. 320.Google Scholar
  15. 15.
    S. K. Bose, V. Ananth, and S. C. Sircar, Proc. 10th Congr. Metallic. Corros., Madras, Vol. 4 (Oxford and IBH, New Delhi, 1987), p. 3615.Google Scholar
  16. 16.
    S. K. Roy, S. K. Bose, and S. C. Sircar,Oxid. Met. 35, 1 (1991).Google Scholar
  17. 17.
    V. Ananth,Influence of Impressed Direct Current and Short-circuiting on the Oxidation of Copper and Iron and Reduction of Wüstite at High Temperatures, Ph.D. thesis (I.I.T., Kharagpur, India, 1985).Google Scholar
  18. 18.
    J. Xue and R. Dieckmann,J. Phys. Chem. Solids 51, 1263 (1990).Google Scholar
  19. 19.
    V. Ananth, S. C. Sircar, and S. K. Bose,Trans. Jpn. Inst. Metals 26, 123 (1985).Google Scholar
  20. 20.
    S. K. Roy, V. Ananth, and S. K. Bose,Oxid. Met. 43, 185 (1995).Google Scholar
  21. 21.
    P. J. Jorgensen,Oxidation of Metals and Alloys, D. L. Douglass, ed. (ASM, Metals Park, Ohio, 1971, p. 157.Google Scholar
  22. 22.
    P. Kofstad,High Temperature Oxidation of Metals (Wiley, New York, 1966), p. 135.Google Scholar
  23. 23.
    D. O. Raleigh,J. Electrochem. Soc. 113, 782 (1966).Google Scholar
  24. 24.
    P. Kofstad,High Temperature Corrosion (Elsevier Applied Science, London and New York, 1988), p. 199.Google Scholar
  25. 25.
    R. N. Patnaik, S. K. Bose, and S. C. Sircar,Br. Corros. J. 12, 57 (1977).Google Scholar
  26. 26.
    A. T. Fromhold,Theory of Metal Oxidation, Vols. I, II (North-Holland, Amsterdam, 1976, 1980), p. 204.Google Scholar
  27. 27.
    A. T. Fromhold,J. Phys. Chem. Solids 33, 95 (1972).Google Scholar
  28. 28.
    H. Schmalzried,Solid State Reactions, translated by A. D. Pelton (Academic Press, New York, 1974), pp. 163, 180.Google Scholar
  29. 29.
    J. H. Eriksen and K. Hauffe, 5th Scand. Corros. Congr., Copenhagen, 1968, p. 38-I.Google Scholar
  30. 30.
    C. Ilschener-Gensch and C. Wagner,J. Electrochem. Soc. 105, 198 (1958).Google Scholar
  31. 31.
    N. Cabrera and N. F. Mott,Rept. Progr. Phys. 12, 163 (1949).Google Scholar
  32. 32.
    C. Wagner,Z. Phys. Chem. B21, 25 (1933);B312, 447 (1936).Google Scholar
  33. 33.
    C. Wagner,Atom Movements (ASM, Cleveland, Ohio, 1951), p. 151.Google Scholar
  34. 34.
    A. T. Fromhold,J. Phys. Soc. Jpn. 48, 2022 (1980).Google Scholar
  35. 35.
    S. K. Roy,Kinetics of Oxidation of Copper and Its Alloys at Low and Intermediate Temperatures, Ph.D. thesis (I.I.T., Kharagpur, 1976).Google Scholar
  36. 36.
    S. K. Roy and S. C. Sircar, Proc. Second National Conf on Corrosion and Its Control, SEAST, Calcutta, India, 1979, p. 93.Google Scholar
  37. 37.
    Ref. 24., p. 186.Google Scholar
  38. 38.
    Ref. 1. p.103.Google Scholar
  39. 39.
    J. A. Leroux and E. Raub,Z. Anorg. Allgem. Chem. 188, 205 (1930).Google Scholar
  40. 40.
    S. K. Mitra,Influence of Short-Circuiting and Static Charge Supply on the Oxidation Kinetics of Cu, Cu−Li and Cu−Cr Systems in the Temperature Range of 523–1173 K, Ph.D. thesis I.I.T. Kharagpur, India, 1991).Google Scholar
  41. 41.
    F. Gesmundo and F. Viani,J. Electrochem. Soc. 128, 460, 470 (1981);129, 622 (1982).Google Scholar
  42. 42.
    N. F. Mott and R. W. Gurney,Electronic Processes in Inonic Crystals (Dover, New York, 1964), p. 178.Google Scholar
  43. 43.
    O. Kubaschewski and C. B. Alcock,Metallurgical Thermochemistry, 5th ed. (Pergamon Press, 1989), pp. 379, 382.Google Scholar
  44. 44.
    L. V. Azaroff and J. J. Brophy,Electronic Processes in Materials (McGraw-Hill, New York, 1963), p. 345.Google Scholar
  45. 45.
    K. Hauffe,Oxidation of Metals (Plenum Press, New York, 1965).Google Scholar
  46. 46.
    Ref. 5., p. 190.Google Scholar
  47. 47.
    Ref. 5., p. 189.Google Scholar
  48. 48.
    J. Bénard and J. Talbot,C.R. Acad. Sci. Paris 225, 411 (1948).Google Scholar
  49. 49.
    F. P. Fehlner and N. F. Mott,Oxidation of Metals and Alloys D. L. Douglass, ed. (ASM, Metals Park, Ohio, 1971), p. 37.Google Scholar
  50. 50.
    M. J. Graham, D. Caplan, and R. J. Hussey,Can. Met. Q. 18, 283 (1979).Google Scholar
  51. 51.
    P. K. Krishnamurthy and S. C. Sircar,Acta Met. 16, 1461 (1968).Google Scholar
  52. 52.
    S. K. Roy, P. K. Krishnamurthy, and S. C. Sircar,Acta Met. 18, 519 (1970).Google Scholar
  53. 53.
    S. C. Kuiry,Studies on Kinetics of Iodide Film Growth on Pb, Ag and Their Doped Varieties in Iodine Atmosphere, Ph.D. thesis (I.I.T. Kharagpur, India, 1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • S. K. Bose
    • 1
  • S. K. Mitra
    • 2
  • S. K. Roy
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of Metallurgical EngineeringRegional Engineering CollegeDurgapurIndia

Personalised recommendations