Advertisement

Oxidation of Metals

, Volume 45, Issue 1–2, pp 221–244 | Cite as

Studies on the oxidation behavior of Inconel 625 between 873 and 1523 K

  • Lalit Kumar
  • R. Venkataramani
  • M. Sundararaman
  • P. Mukhopadhyay
  • S. P. Garg
Article

Abstract

The oxidation behavior of Inconel 625 during the early stages (<150 min) has been studied at oxygen pressures (PO2) of 0.12 kPa (0.9 torr) and 101.3 kPa (760 torr) in the temperature range of 1323 K to 1523 K by using TGA and between 873 and 1523 K by using XPS, AES, and EDS. The TGA results correlated well with those obtained by surface analysis of the oxide films. The results of XPS and AES analysis suggested that two distinctly different oxidation mechanisms operate, depending on the temperature of oxidation. Enrichment of the oxide films with respect to Cr2O3 occurs above 873 K, the degree of enrichment peaking at about 1200 K such that the oxide films formed at temperatures close to this consist almost exclusively of Cr2O3. At temperatures above 1300 K, the oxides of two minor alloying components, Nb and Ti, have been found to be present in the oxide films in significant proportions. The results have been discussed on the basis of the relative thermodynamic stabilities of the competing oxide phases and the diffusivities of the alloying elements in Inconel 625.

Key Words

high-temperature oxidation kinetics of Inconel 625 TGA XPS AES EDS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Technology Forecast,Met. Progr. Jan., 44 (1981).Google Scholar
  2. 2.
    D. E. Wenschoff, Technical Service Memorandum, Huntington Alloy Products Division, The International Nickel Co., Huntington, West Virginia, 1974.Google Scholar
  3. 3.
    G. E. Wasielewski and R. A. Rapp, inThe Superalloys, C. T. Sims and W. C. Hagel, eds. (Wiley, New York, 1972), p. 287.Google Scholar
  4. 4.
    G. C. Wood,Oxid. Met. 2, 11 (1970).Google Scholar
  5. 5.
    K. N. Strafford, inConf. Proc. on High Temperature Alloys: Their Exploitable Potentials, J. B. Marriott, M. Merz, J. Nihoul, and J. Ward, eds. (Elsevier Applied Sci., Amsterdam, 1985), p. 53.Google Scholar
  6. 6.
    S. R. Smith, W. J. Carter III, G. D. Mateescu, F. J. Kohlm, G. C. Fryburg, and C. A. Stearns,Oxid. Met. 14, 415 (1980).Google Scholar
  7. 7.
    S. R. J. Saunders,Sci. Prog. Oxf. 63, 163 (1976).Google Scholar
  8. 8.
    N. Hussain, K. A. Shahid, I. H. Khan, and S. Rahman,Oxid. Met. 41, 251 (1994).Google Scholar
  9. 9.
    B. Pieraggi and R. A. Rapp,J. Electrochem. Soc. 140, 2844 (1993).Google Scholar
  10. 10.
    R. D. K. Mishra and R. Sivakumar,Oxid. Met. 25, 83 (1986).Google Scholar
  11. 11.
    Y. Saito, T. Inoue, T. Moruyama, and T. Amano,Boshoku Gijutsu 31, 109 (1982).Google Scholar
  12. 12.
    T. Walec,mater. Sci. Monogr. 10, 284 (1982).Google Scholar
  13. 13.
    G. Baran and A. R. McGhie, inInt. Conf. on Thermal Analysis, vol. 1, B. Miller, ed. (Wiley, Chichester, UK, 1982), p. 120.Google Scholar
  14. 14.
    F. H. Stott,Mater. Charact. 28, 311 (1992).Google Scholar
  15. 15.
    A. Strawbridge, F. H. Stott, and G. C. Wood,Corros. Sci. 35, 855 (1993).Google Scholar
  16. 16.
    A. S. Khanna, W. J. Quadakkers, X. Yang, and H. Schuster,Oxid. Met. 40, 275 (1993).Google Scholar
  17. 17.
    Y. Zhang and D. A. Shores,Oxid. Met. 40, 529 (1993).Google Scholar
  18. 18.
    P. Elliot and A. F. Hampton,Oxid. Met. 14, 449 (1980).Google Scholar
  19. 19.
    T. Amano and T. Taguchi,J. Alloys Compd. 193, 20 (1993).Google Scholar
  20. 20.
    F. Abe, H. Avaki, H. Yoshida, and M. Okada,Oxid. Met. 27, 21 (1987).Google Scholar
  21. 21.
    M. Durasso and R. L. Ramanathan,Congr. Anu. ABM 36, 353 (1981).Google Scholar
  22. 22.
    N. Hussain, G. Schanz, S. Leistikow, and K. A. Shahid,Oxid. Met. 32, 405 (1989).Google Scholar
  23. 23.
    H. J. Christ, L. Berchtold, and H. G. Sockel,Oxid. Met. 26, 45 (1986).Google Scholar
  24. 24.
    C. S. Giggins and F. S. Pettit,Trans. Metall., Soc. AIME 245, 2495 (1969).Google Scholar
  25. 25.
    S. Chattopadhyay and G. C. Wood,J. Electrochem. Soc. 117, 1176 (1970).Google Scholar
  26. 26.
    R. P. Abendroth,Met. Trans. 230, 1735 (1964).Google Scholar
  27. 27.
    N. S. McIntyre and D. G. Zetaruk,J. Vacuum Sci. Technol. 14, 181 (1977).Google Scholar
  28. 28.
    N. S. McIntyre, D. G. Zetaruk, and D. Owen,Appl. Surface Sci. 2, 55 (1978).Google Scholar
  29. 29.
    J. C. Langevoort, I. Sutherland, L. J. Hanckamp, and P. J. Gellings,Appl. Surface Sci. 28, 167 (1987).Google Scholar
  30. 30.
    K. S. Kim, W. E. Baitinger, J. W. Amy, and N. Winograd,J. Electron Spectrosc. Rel. Phenom. 5, 351 (1974).Google Scholar
  31. 31.
    M. Lenglet, R. Guillamet, J. Lopitaux, and B. Hannoyer,Mater. Res. Bull. 25, 715 (1990).Google Scholar
  32. 32.
    C. S. Tedmon, Jr.,J. Electrochem. Soc. 113, 766 (1966).Google Scholar
  33. 33.
    C. A. Stearns, F. J. Kohl, and G. C. Fryburg,J. Electrochem. Soc. 121, 945 (1974).Google Scholar
  34. 34.
    H. C. Graham and H. H. Davis,J. Am. Ceram. Soc. 54, 89 (1971).Google Scholar
  35. 35.
    L. B. Pankratz, J. M. Stuve and N. A. Gokcen,Thermodynamic Data for Mineral Technology (U.S. Bureau of Mines, Bull. No. 677, 1984).Google Scholar
  36. 36.
    C. D. Wagner, M. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg (eds.),Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Minnesota, 1979).Google Scholar
  37. 37.
    K. S. Kim and R. E. Davis,J. Electron Spectrosc. Rel. Phenom. 1, 251 (1972).Google Scholar
  38. 38.
    C. Wagner,J. Electrochem. Soc. 113, 1245 (1952).Google Scholar
  39. 39.
    T. F. Chen, Y. Iijima, K. Hirano, and K. Yamauchi,J. Nucl. Mater. 169, 285 (1989).Google Scholar
  40. 40.
    J. B. Malherbe, S. Hofmann, and J. M. Sanz,Appl. Surface Sci. 27, 355 (1986).Google Scholar
  41. 41.
    C. Wagner,J. Electrochem. Soc. 99, 369 (1952).Google Scholar
  42. 42.
    R. V. Patil, K. Bhanumoorthy, and G. B. Kale, inProc. Int. Conf. Physical Metallurgy, Bombay, 1994, to be published.Google Scholar
  43. 43.
    M. Sundararaman and P. Mukhopadhyay,Met. Mater. Proces. 3, 1 (1991).Google Scholar
  44. 44.
    G. Ben Abderrazik, G. Moulin, and A. M. Huntz,Oxid. Met. 33, 191 (1990).Google Scholar
  45. 45.
    R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke,Oxid. Met. 37, 81 (1992).Google Scholar
  46. 46.
    W. C. Hagel and A. U. Seybolt,J. Electrochem. Soc. 108, 1146 (1961).Google Scholar
  47. 47.
    T. A. Ramanarayanan and R. Petkovic-Luton,Ber. Bunsen-Ges. Phys. Chem. 89, 402 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Lalit Kumar
    • 1
  • R. Venkataramani
    • 1
  • M. Sundararaman
    • 1
  • P. Mukhopadhyay
    • 1
  • S. P. Garg
    • 1
  1. 1.Metallurgy DivisionBhabha Atomic Research CentreBombayIndia

Personalised recommendations