Advertisement

Journal of Theoretical Probability

, Volume 5, Issue 1, pp 127–152 | Cite as

Multicolor particle systems with large threshold and range

  • R. Durrett
Article

Abstract

In this paper we consider the Greenberg-Hastings and cyclic color models. These models exhibit (at least) three different types of behavior. Depending on the number of colors and the size of two parameters called the threshold and range, the Greenberg-Hastings model either dies out, or has equilibria that consist of “debris” or “fire fronts”. The phase diagram for the cyclic color models is more complicated. The main result of this paper, Theorem 1, proves that the debris phase exists for both systems.

Key Words

Particle systems cellular automata excitable media cyclic color models Greenberg-Hastings model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bramson, M., and Griffeath, D. (1989). Flux and fixation in cyclic particle systems.Ann. Prob 17, 26–45.Google Scholar
  2. 2.
    Cox, J. T., and Durrett, R. (1991). Nonlinear voter models. InRandom Walks, Brownian Motion, and Interacting Particle Systems, eds. R. Dunett and H. Kesten, Birkhauser, Boston.Google Scholar
  3. 3.
    Durrett, R. (1984). Oriented percolation in two dimensions.Ann. Prob. 12, 999–1040.Google Scholar
  4. 4.
    Durrett, R., and Gray, L. (1985). Some peculiar properties of a particle system with sexual reproduction. Unpublished manuscript.Google Scholar
  5. 5.
    Durrett, R., and Griffeath, D. (1982). Contact processes in several dimensions.Z. Warsch. verw. Gebiete 59, 535–552.Google Scholar
  6. 6.
    Durrett, R., and Neuhauser, C. (1991). Epidemics with regrowth ind=2.Ann. Appl. Prob. 1, 189–206.Google Scholar
  7. 7.
    Durrett, R., and Steif, J. (1991). Some rigorous results for the Greenberg-Hastings model.J. Theor. Prob. 4, 669–690.Google Scholar
  8. 8.
    Fisch, R. (1990). Clustering in the one-dimensional 3-color cyclic cellular automaton.J. Theor. Prob. 3, 311–338.Google Scholar
  9. 9.
    Fisch, R., Gravner, J., and Griffeath, D. (1991). Cyclic cellular automata in two dimensions. InSpatial Stochastic Processes. A Festchrift in Honor of Ted Harris on his seventieth birthday, eds. K. Alexander, and J. Watkins, Birkhauser, Boston.Google Scholar
  10. 10.
    Fisch, R., Gravner, J., and Griffeath, D. (1991). Threshold-range scaling for excitable cellular automata.Statistics and Computing 1, 23–39.Google Scholar
  11. 11.
    Fisch. R., Gravner, J., and Griffeath, D. (1992). Metastability in the Greenberg-Hastings model. In preparation.Google Scholar
  12. 12.
    Greenberg, J. M., Hassard, B. D., and Hastings, S. P. (1978). Pattern formation and periodic structures in systems modeled by reaction-diffusion equations.Bull. AMS 84, 1296–1327.Google Scholar
  13. 13.
    Greenberg, J. M., and Hastings, S. P. (1978). Spatial patterns for discrete models of diffusion in excitable media.SIAM J. Appl. Math. 34, 515–523.Google Scholar
  14. 14.
    Kesten, H. (1986). Aspects of first passage percolation. InÉcole d'Été de Probabilités de Saint-Flour XIV. Springer Lecture Notes in Mathematics, Vol. 1180, Springer, New York.Google Scholar
  15. 15.
    Liggett, T. M. (1985).Interacting Particle Systems. Springer, New York.Google Scholar
  16. 16.
    Rosenblatt, M. (1965). Transition probability operators. In theFifth Berkeley Symposium, Vol. II, Part II, pp. 473–483.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • R. Durrett
    • 1
  1. 1.Cornell UniversityIthaca

Personalised recommendations