Oxidation of Metals

, Volume 44, Issue 1–2, pp 211–237 | Cite as

Oxidation of multicomponent two-phase alloys

  • F. Gesmundo
  • B. Gleeson
Article

Abstract

The high-temperature corrosion behavior of two-phase alloys presents a number of differences compared to that of single-phase alloys. These differences are mainly a consequence of the limitations that the presence of two phases impose on the diffusion of the alloy components. In this review, it is shown that the exclusive scale formation of the more stable, slow-growing oxide is more difficult on a two-phase alloy, requiring a higher concentration of the more reactive alloy component than for a corresponding single-phase alloy. The main types of corrosion behavior for binary two-phase alloys are also considered, showing that if diffusion in the alloy is slow the scale structure will closely reflect that of the starting material. When diffusion in the alloy is not negligible, the scale structure becomes similar to what forms on single-phase alloys. The oxidation of two-phase ternary alloys is shown to be even more complex than the two-phase binary alloys. The principal added complexity compared to the binary alloys is that diffusion in the ternary alloys may also occur in the presence of two metal phases, as a result of an extra degree of freedom in the ternary system. The oxidation behavior of two-phase ternary alloys is discussed in the context of a number of recent experimental results.

Key Words

multiphase alloy oxidation depletion zone reservoir effect diffusion path 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Kofstad,High Temperature Corrosion (Elsevier Applied Science, London, 1988).Google Scholar
  2. 2.
    G. R. Wallwork,Reps. Progr. Phys. 39, 401 (1976).Google Scholar
  3. 3.
    D. P. Whittle, inHigh Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, 1983), p. 171.Google Scholar
  4. 4.
    G. C. Wood and F. H. Stott,Mater. Sci. Technol. 3, 519 (1987).Google Scholar
  5. 5.
    G. Wahl,Thin Solid Films 107, 417 (1983).Google Scholar
  6. 6.
    J. Stringer, P. Corkish, and D. P. Whittle, inStress Effects on the Oxidation of Metals, J. V. Cathcart, ed. (Met. Soc. AIME, New York, 1975), p. 75.Google Scholar
  7. 7.
    Ge Wang, B. Gleeson, and D. L. Douglass,Oxid. Met. 35, 333 (1991).Google Scholar
  8. 8.
    Ge Wang,J. Phys. IV, Colloq. C9, suppl.J. Phys. III 3, 873 (1993).Google Scholar
  9. 9.
    S. Ling, T. A. Ramanarayanan, and R. Petkovi-Luton,Oxid. Met. 40, 179 (1993).Google Scholar
  10. 10.
    F. Gesmundo, F. Viani, Y. Niu, and D. L. Douglass,Oxid. Met. 39, 197 (1993).Google Scholar
  11. 11.
    F. Gesmundo, F. Viani, Y. Niu, and D. L. Douglass,Oxid. Met. 40, 373 (1993).Google Scholar
  12. 12.
    F. Gesmundo, F. Viani, Y. Niu, and D. L. Douglass,Oxid. Med. 42, 465 (1994).Google Scholar
  13. 13.
    F. Gesmundo, F. Viani, and Y. Niu,Oxid. Met. 42, 409 (1994).Google Scholar
  14. 14.
    F. Gesmundo, Y. Niu, and F. Viani,Oxid. Met. 43, 379 (1995).Google Scholar
  15. 15.
    F. Gesmundo, Y. Niu, and F. Viani,Oxid. Met., accepted for publication.Google Scholar
  16. 16.
    J. L. Smialek and G. H. Meier, inSuperalloys II, C. T. Sims, N. S. Stoloff, and W. C. Hagel, eds. (Wiley, New York, 1987), p. 293.Google Scholar
  17. 17.
    G. T. Lai,High-Temperature Corrosion of Engineering Alloys (ASM, Materials Park, OH, 1990).Google Scholar
  18. 18.
    J. A. Nesbitt, N. S. Jacobson, and R. A. Miller, inSurface Engineering, Vol. II:Technological Aspects, R. Kossowsky, ed. (CRC Press, Boca Raton, FL, 1989), p. 25.Google Scholar
  19. 19.
    R. Dorolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle, and M. V. Nathal,Structural Intermetallics (TMS, Warrendale, PA, 1993).Google Scholar
  20. 20.
    T. Grobstein and J. Doychak (eds.),Oxidation of High-Temperature Intermetallics (TMS, Warrendale, PA, 1988).Google Scholar
  21. 21.
    J. G. Smeggil,Oxid. Met. 9, 31 (1975).Google Scholar
  22. 22.
    J. G. Smeggil,Oxid. Met. 9, 225 (1975).Google Scholar
  23. 23.
    J. Stringer, D. M. Johnson, and D. P. Whittle,Oxid. Met. 12, 257 (1978).Google Scholar
  24. 24.
    M. E. El Dahshan and M. I. Hazzaa,Werkst. Korros. 38, 422 (1987).Google Scholar
  25. 25.
    F. H. Stott, G. C. Wood, and J. G. Fountain,Oxid. Met. 14, 31 (1980).Google Scholar
  26. 26.
    L. V. Mallia and D. J. Young,Oxid. Met. 21, 103 (1984).Google Scholar
  27. 27.
    N. Belen, P. Tomaszewicz, and D. J. Young,Oxid. Met. 22, 227 (1984).Google Scholar
  28. 28.
    J. Doychak, J. A. Nesbitt, R. D. Noebe, and R. R. Bowman,Oxid. Met. 38, 45 (1992).Google Scholar
  29. 29.
    D. E. Alman and N. S. Stoloff, inHigh Temperature Silicides and Refractory Alloys, Mat. Res. Soc. Symp. Proc. Vol. 322, C. L. Briant, J. J. Petrovic, B. P. Bewlay, A. K. Vasudvan, and H. A. Lipsitt, eds. (Materials Research Society, 1994), p. 255.Google Scholar
  30. 30.
    B. Gleeson, W. H. Cheung, and D. J. Young,Corros. Sci. 35, 923 (1993).Google Scholar
  31. 31.
    S. Espevik, R. A. Rapp, P. L. Daniel, and J. P. Hirth,Oxid. Met. 20, 37 (1983).Google Scholar
  32. 32.
    C. A. Barrett and C. E. Lowell,Oxid. Met. 11, 199 (1977).Google Scholar
  33. 33.
    J. L. González Carrasco, P. Adeva, and M. Abell,Oxid. Met. 33, 1 (1990).Google Scholar
  34. 34.
    J. A. Nesbitt and R. W. Heckel,Oxid. Met. 29, 75 (1988).Google Scholar
  35. 35.
    G. P. Wagner and G. Simkovich,Oxid. Met. 27, 157 (1987).Google Scholar
  36. 36.
    M. E. El Dahshan, J. Stringer, and D. P. Whittle,Cobalt 4, 86 (1974).Google Scholar
  37. 37.
    V. Nagarajan, I. G. Wright, and J. Stringer, Proc. 12th Int. Plansee Seminar, 1989, p. 333.Google Scholar
  38. 38.
    I. G. Wright and V. Nagarajan,J. Phys. IV, Colloq. C9, suppl.J. Phys. III 3, 151 (1993).Google Scholar
  39. 39.
    I. G. Wright, V. Nagarajan, and J. Stringer,Corros. Sci. 35, 841 (1993).Google Scholar
  40. 40.
    X. L. Li, R. Hillel, F. Teyssandier, S. K. Choi, and F. J. J. Van Loo,Acta Metall. Mater. 40, 3149 (1992).Google Scholar
  41. 41.
    G. Welsch and A. I. Kahveci, inOxidation of High-Temperature Intermetallics, T. Grobstein and J. Doychak, eds. (TMS, Warrendale, PA, 1988), p. 207.Google Scholar
  42. 42.
    R. Petkovic-Luton and T. A. Ramanarayanan,Oxid. Met. 34, 381 (1990).Google Scholar
  43. 43.
    C. Wagner,J. Electrochem. Soc. 99, 369 (1952).Google Scholar
  44. 44.
    W. J. Quaddakers, N. Zheng, A. Gil and H. Nickel, inProgress in the Understanding and Prevention of Corrosion, J. M. Costa and A. D. Mercer, eds. (Inst. of Materials, London, 1993), Vol. 1, p. 770.Google Scholar
  45. 45.
    R. Durham, B. Gleeson, and D. J. Young, unpublished research, The University of New South Wales, Australia.Google Scholar
  46. 46.
    M. Castro Rebelo, Y. Niu, F. Rizzo, and F. Gesmundo,Oxid. Met. 43, 561 (1995).Google Scholar
  47. 47.
    M. J. Monteiro, Y. Niu, F. Rizzo, and F. Gesmundo,Oxid. Met. 43, 527 (1995).Google Scholar
  48. 48.
    F. Gesmundo, P. Nanni, and D. P. Whittle,J. Electrochem. Soc. 127, 1773 (1980).Google Scholar
  49. 49.
    R. A. Rapp,Corrosion 21, 382 (1965).Google Scholar
  50. 50.
    F. Gesmundo, P. Nanni and f. Viani,Proc. 9th Internat. Symp. on Reactivity of Solids (Elsevier, Amsterdam, 1982), Vol. 1, p. 151.Google Scholar
  51. 51.
    Y. Niu, F. Gesmundo, F. Viani, and D. L. Douglass,Oxid. Met. accepted for publication.Google Scholar
  52. 52.
    B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 31, 209 (1989).Google Scholar
  53. 53.
    G. Wang, R. Carter, and D. L. Douglass,Oxid. Met. 32, 273 (1989).Google Scholar
  54. 54.
    Y. Niu, F. Gesmundo, and F. Viani,Corros. Sci. 36, 423 (1994).Google Scholar
  55. 55.
    Y. Niu, F. Gesmundo, and F. Viani,Corros. Sci. 36, 853 (1994).Google Scholar
  56. 56.
    R. T. DeHoff,Thermodynamics in Materials Science (McGraw-Hill, New York, 1993), p. 214.Google Scholar
  57. 57.
    B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 34, 123 (1990).Google Scholar
  58. 58.
    M. P. Brady, R. J. Hanrahan, and E. D. Verink, inProcessing and Fabrication of Advanced Materials for High Temperature Applications—II, V. A. Ravi and T. S. Srivatsan, eds. (TMS, Warrendale, PA, 1993), p. 419.Google Scholar
  59. 59.
    M. P. Brady, R. J. Hanrahan, S. P. Randall, and E. D. Verink,Scripta Metall. 28, 115 (1993).Google Scholar
  60. 60.
    D. Yang and B. Gleeson, unpublished research, The University of New South Wales, Australia.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • F. Gesmundo
    • 1
  • B. Gleeson
    • 2
  1. 1.Istituto di Chimica, Facoltà di IngegneriaUniversità di GenovaGenovaItaly
  2. 2.School of Materials Science and EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations