Advertisement

Radiophysics and Quantum Electronics

, Volume 35, Issue 11–12, pp 621–636 | Cite as

Universal adaptive lattice filters. Adaptation for a given root of the estimating correlation matrix

  • D. I. Lekhovitskii
  • S. B. Milovanov
  • I. D. Rakov
  • B. G. Sverdlov
Article

Abstract

Algorithms for the adjustment of adaptive lattice filters according to a given root of the estimating noise-correlation matrix (CM) are considered. A basic algorithm is synthesized from which can be derived adjustment algorithms that take into account a priori information on the CM structure. Methods for simplification of the algorithm and increasing its efficiency are examined.

Keywords

Correlation Matrix Basic Algorithm Estimate Correlation Adjustment Algorithm Lattice Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. I. Lekhovitskii, Izv. Vyssh. Uchebn. Zaved., Radiofiz.35, No. 9-10, 790 (1992).Google Scholar
  2. 2.
    D. I. Lekhovitskii, I. G. Kirillov, and S. B. Milovanov, Deposited article, Reg. No. 2127-V92, VINITI, July 1 (1992).Google Scholar
  3. 3.
    V. I. Zaritskii, V. N. Kokin, D. I. Lekhovitskii, and V. V. Salamantin, Izv. Vyssh. Uchebn. Zaved., Radiofiz.,28, No. 7, 863 (1985).Google Scholar
  4. 4.
    Yu. I. Abramovich, Radiotekh. Élektron.,26, No. 3, 543 (1981).Google Scholar
  5. 5.
    O. P. Cheremisin, Radiotekh. Élektron.,27, No. 10, 1933 (1982).Google Scholar
  6. 6.
    M. Yu. Lishak, Trudy MÉI, No 418, 109 (1979).Google Scholar
  7. 7.
    V. M. Koshevoi, Izv. Vyssh. Uchebn. Zaved., Radioélektron.,25, No. 9, 71 (1982).Google Scholar
  8. 8.
    M. B. Sverdlik and V. É. Shpatakovskii, Radiotekh. Élektron.,34, No. 4, 760 (1989).Google Scholar
  9. 9.
    A. K. Zhuravlev and M. V. Ermolin, Izv. Vyssh. Uchebn. Zaved., Radioélektron.,29, No. 2, 93 (1986).Google Scholar
  10. 10.
    D. P. Berg, D. G. Lunberger, and D. D. Wenger, Proc. IEEE,70, No. 9, 1982.Google Scholar
  11. 11.
    Yu. I. Abramovich and D. Z. Arov, Radiotekh. Élektron.,32, 2525 (1987).Google Scholar
  12. 12.
    I. S. Iokhvidov, Henkel and Toeplitz Matrices and Forms [in Russian], Nauka, Moscow (1974), 263 pp.Google Scholar
  13. 13.
    B. Friedlander, Proc. IEEE,70, No. 8, (1982).Google Scholar
  14. 14.
    S. M. Kay and S. P. Marple, Proc. IEEE,69, No. 11, (1981).Google Scholar
  15. 15.
    G. Van Tris, Theory of Detection, Estimation, and Modulation [Russian translation], Vol. 3, Sovetskoe Radio, Moscow (1977), 663 pp.Google Scholar
  16. 16.
    D. I. Lekhovitskii, V. I. Zaritskii, I. D. Rakov, et al., Preprint RTI AS USSR, No. 8610, Moscow (1987).Google Scholar
  17. 17.
    D. I. Lekhovitskii and I. D. Rakov, Radiotekhnika, No. 9, 60 (1986).Google Scholar
  18. 18.
    D. I. Lekhovitskii, I. D. Rakov, and V. M. Dankevich, Radiotekhnika, No. 7, 73 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • D. I. Lekhovitskii
  • S. B. Milovanov
  • I. D. Rakov
  • B. G. Sverdlov

There are no affiliations available

Personalised recommendations