Advertisement

Journal of Chemical Ecology

, Volume 12, Issue 1, pp 169–178 | Cite as

Fate of ingested iridoid glycosides in lepidopteran herbivores

  • M. Deane Bowers
  • Gillian M. Puttick
Article

Abstract

Thin-layer chromatography was used to follow the fates of iridoid glycosides ingested by four species of lepidopteran herbivores. These four species differed in their feeding strategy, ranging from generalist to monophagous specialist; and in their predator avoidance strategy, ranging from cryptic and palatable to aposematic and unpalatable. The fates of the iridoid glycosides ranged from sequestration by the unpalatable specialist,Euphydryas phaeton (Nymphalidae); to passage into the hemolymph and eventual elimination in the meconium by the specialistsJunonia coenia (Nymphalidae) andCeratomia catalpas (Sphingidae); to elimination of the intact compounds in the feces of the generalist feeder,Lymantria dispar (Lymantriidae).

Key words

Iridoid glycoside Lepidoptera Euphydryas phaeton Nymphalidae Junonia coenia Ceratomia catalpae Sphingidae Lymantria dispar Lymantriidae chemical ecology insect-plant interaction unpalatability insect defense strategy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernays, E. andDe Luca, C. 1981. Insect anti-feedant properties of an iridoid glycoside: Ipolamiide.Experientia 37:1289–1290.Google Scholar
  2. Blum, M.S. 1981. Arthropod Defenses. Academic Press, New York.Google Scholar
  3. Blum, M.S. 1983. Detoxification, deactivation, and utilization of plant compounds by insects, pp. 265–275,in P. Hedin (ed.). Plant Resistance to Insects. American Chemical Society, Washington, D.C.Google Scholar
  4. Bobbitt, J.M., andSegebarth, D.P. 1969. Iridoid glycosides and similar substances, pp. 1–145,in W.I. Taylor and A.R. Battersby (eds.). Cyclopentanoid Terpene Derivatives. Marcel Dekker, New York.Google Scholar
  5. Bowers, M.D. 1979. Unpalatability as a defense strategy of checkerspot butterflies with a special reference toEuphydryas phaeton (Nymphalidae). PhD thesis. University of Massachusetts, Amherst, MA.Google Scholar
  6. Bowers, M.D. 1980. Unpalatability as a defense strategy ofEuphydryas phaeton (Lepidoptera: Nymphalidae).Evolution 34:586–600.Google Scholar
  7. Bowers, M.D. 1981. Unpalatability as a defense strategy of western checkerspot butterflies (Euphydryas, Nymphalidae).Evolution 35:367–375.Google Scholar
  8. Bowers, M.D. 1983. Iridoid glycosides and larval hostplant specificity in checkerspot butterflies (Euphydryas, Nymphalidae).J. Chem. Ecol. 9:475–493.Google Scholar
  9. Bowers, M.D. 1984. Iridoid glycosides and host-plant specificity in larvae of the buckeye butterfly,Junonia coenia (Nymphalidae).J. Chem. Ecol. 10:1567–1577.Google Scholar
  10. Brattsten, L.B. 1979. Biochemical defense mechanisms in herbivores against plant allelochemicals, pp. 200–270,in G.A.D. Rosenthal and D. Janzen (eds.). Herbivores: Their Interaction with Plant Secondary Metabolites. Academic Press, New York.Google Scholar
  11. Brower, L.P., Ryerson, W.N., Coppinger, L.L., andGlazier, S.C. 1968. Ecological chemistry and the palatability spectrum.Science 161:1349–1351.Google Scholar
  12. Bull, D.L., Ivie, G.W., Beier, R.C., Pryor, N.W., andOertli, E.H. 1984. Fate of photosensitizing furanocoumarins in tolerant and sensitive insects.J. Chem. Ecol. 10:893–911.Google Scholar
  13. Chang, C.C., andNakanishi, K. 1983. Specionin, an iridoid insect antifeedant fromCatalpa speciosa.J. Chem. Soc. Chem. Commun. 1983:605–606.Google Scholar
  14. Connor, W.E., Eisner, T., Van Der Meer, R.K., Guerrero, A., andMeinwald, J. 1981. Precopulatory sexual interaction in an arctiid moth (Utetheisa ornatrix): Role of a pheromone derived from dietary alkaloids.Behav. Ecol. Sociobiol. 9:227–235.Google Scholar
  15. Dahlgren, R., Jensen, S.R., andNielsen, B.J. 1981. A revised classification of the angiosperms with comments on the correlation between chemical and other characters, pp. 149–204,in C.A. Young and D.S. Seigler (eds.). Phytochemistry and Angiosperm Phylogeny. Praeger, New York.Google Scholar
  16. Duffey, S.S. 1980. Sequestration of plant natural products by insects.Annu. Rev. Entomol. 25:447–477.Google Scholar
  17. Duffey, S.S., andScudder, G.G.E. 1972. Cardiac glycosides in North American Asclepiadaceae, a basis for Unpalatability in brightly colored Hemiptera and Coleoptera.J. Insect Physiol. 18:16–78.Google Scholar
  18. El-Naggar, L.J., andBeal, J.L. 1980. Iridoids: A review.J. Nat. Prod. 43:649–707.Google Scholar
  19. Gershenzon, J., andMabry, T.J. 1983. Secondary metabolites and the higher classification of angiosperms.Nord. J. Bot. 3:5–34.Google Scholar
  20. Hegnauer, R. 1966. Aucubin-like glycosides: Distribution and significance as a systematic criterion.Pharm. Acta Helv. 11:577–587.Google Scholar
  21. Hegnauer, R., andKooiman, P. 1978. Die systematische Bedeutung von iridoiden Inhaltsstoffen im Rahmen von Wettstein's Tubiflorae.Planta Med. 33:1–37.Google Scholar
  22. Hodges, R. 1971. Moths of North America, Fascicle 21. Sphingoidea. E.W. Classey, London.Google Scholar
  23. Isman, M.B., Duffey, S.S., andScudder, G.G.E. 1977. Cardenolide content of some leaf- and stem-feeding insects on temperate North American milkweeds (Asclepias sp.)Can. J. Zool. 55:1024–1028.Google Scholar
  24. Ivie, G.W., Bull, D.L., Beier, R.C., Pryor, N.W., andOertli, E.H. 1983. Metabolic detoxification: Mechanism of insect resistance to plant psoralens.Science 221:374–376.Google Scholar
  25. Jensen, S.R., Neilsen, B.J., andDahlgren, R. 1975. Iridoid compounds, their occurrence and systematic importance in the angiosperms.Bot. Not. 128:148–180.Google Scholar
  26. Kubota, T., andKubo, I. 1969. Bitterness and chemical structure.Nature 223:97–99.Google Scholar
  27. Leonard, D.E. 1974. Recent developments in ecology and control of the gypsy moth.Annu. Rev. Entomol. 19:197–229.Google Scholar
  28. Nayar, J.K., andFraenkel, G. 1963. The chemical basis of host selection in the catalpa sphinx,Ceratomia catalpae (Lepidoptera: Sphingidae).Ann. Entomol. Soc. Am. 56:119–122.Google Scholar
  29. Nishio, S. 1980. The fates and adaptive significance of cardenolides sequestered by larvae ofDanaus plexippus (L.) andCycnia inopinatus (Hy.). PhD thesis, University of Georgia, University Microfilms, Inc, Ann Arbor, MI.Google Scholar
  30. Parsons, J.A. 1965. A digitalis-like toxin in the monarch butterfly,Danaus plexippus L.J. Physiol. 178:290–304.Google Scholar
  31. Roeske, C.N., Seiber, J.N., Brower, L.P., andMoffitt, C.M. 1976. Milkweed cardenolides and their comparative processing by monarch butterflies (Danaus plexippus).Recent Adv. Phytochem. 10:93–167.Google Scholar
  32. Rosenthal, B.A., Janzen, D.H., andDahlman, D.L. 1977. Degradation and detoxification of canavanine by a specialized seed predator.Science 196:658–660.Google Scholar
  33. Rothschild, M. 1973. Secondary plant substances and warning colouration in insects, pp. 59–83,in H.F. van Emden (ed.). Insect/Plant Relationships. John Wiley & Sons, New York.Google Scholar
  34. Rothschild, M. Von EUW, J., andReichstein, T. 1972. Aristolochic acids stored byZerynthia polyxena (Lepidoptera).Insect Biochem. 2:334–343.Google Scholar
  35. Schneider, D., Boppre, M., Schneider, H., Thompson, W.R., Boriak, C.J., Pretty, R.L., andMeinwald, J. 1975. A pheromone precursor and its uptake in maleDanaus butterflies.J. Comp. Physiol. 97:245–256.Google Scholar
  36. Self, L.S., Guthrie, F.E., andHodgson, E. 1964a. Adaptation of tobacco hornworns to the ingestion of nicotine.J. Insect Physiol. 10:907–914.Google Scholar
  37. Self, L.S., Guthrie, F.E., andHodgson, E. 1964b. Metabolism of nicotine by tobacco-feeding insects.Nature 204:300–301.Google Scholar
  38. Sha'ban, R., El-Naggar, S.F., andDoskotch, R.W. 1980. Specioside: A new iridoid glycoside fromCatalpa speciosa.J. Nat. Prod. 43:524–526.Google Scholar
  39. Stephenson, A.G. 1981. Toxic nectar deters nectar thieves ofCatalpa speciosa.Am. Midl. Nat. 105:381–383.Google Scholar
  40. Stephenson, A.G. 1982. Iridoid glycosides in the nectar ofCatalpa speciosa are unpalatable to nectar thieves.J. Chem. Ecol. 8:1025–1034.Google Scholar
  41. Teas, H.J. 1967. Cycasin synthesis inSeirarctia echo (Lepidoptera) larvae fed methylazoxymemanol.Biochem. Biophys. Res. Commun. 26:686–690.Google Scholar
  42. Thomas, R. 1961. A possible biosynthetic relationship between the cyclopentanoid monoterpenes and the indole alkaloids.Tetrahedron Lett. 16:544–553.Google Scholar
  43. Wieffering, J.H. 1966. Aucubin Glucoside (Pseudoindikane) und verwandter Heteroside als aystematische Merkmale.Phytochemistry 5:1053–1064.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • M. Deane Bowers
    • 1
  • Gillian M. Puttick
    • 1
  1. 1.Museum of Comparative ZoologyHarvard UniversityCambridge

Personalised recommendations