Advertisement

Journal of Materials Science

, Volume 25, Issue 3, pp 1842–1850 | Cite as

Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbide

  • J. C. Viala
  • P. Fortier
  • J. Bouix
Article

Abstract

An experimental investigation was carried out on the Al-C-Si ternary system under atmospheric pressure and at temperatures up to 1900 K. From the results obtained, a thermodynamic model based on stable and metastable phase equilibria in the Al-C-Si ternary system was set up in order to provide a general description of the chemical interaction between aluminium and SiC. According to this model, aluminium and SiC are in thermodynamic equilibrium at every temperature lower than 923 K. At 923±3 K, i.e. at 10 K below the melting point of pure aluminium, a quasiperitectic invariant transformation occurs in the Al-C-Si system. In this transformation, solid aluminium reacts with SiC to give Al4C3 and a ternary (Al-C-Si) liquid phase. The carbon content of this liquid phase is very low; its silicon content is 1.5±0.4 at%. From 923 to about 1620 K, aluminium partially reacts with an excess of SiC, leading to a metastable monovariant equilibrium involving SiC, Al4C3 and an aluminium-rich (Al-C-Si) ternary liquid phase, L. The carbon content of this liquid phase, L, remains very low whereas its silicon content increases with temperature from 1.5±0.4 at% at 923 K to 16.5±1 at% at 1620 K. In the temperature range 1670 to 1900 K, two other three-phased monovariant equilibria can be reached by reacting aluminium and SiC. These equilibria involve on the one hand SiC, Al4SiC4 and a liquid phase, L′, and on the other hand, Al4SiC4, Al4C3 and a liquid phase, L″. The former is a stable equilibrium, the latter is a metastable one. At temperatures higher than about 2200 K, the latter metastable equilibrium is replaced by two monovariant stable phase equilibria including the ternary carbide Al8SiC7.

Keywords

Carbide Liquid Phase Carbon Content Silicon Carbide Ternary System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Iseki, T. Kameda andT. Maruyama,J. Mater. Sci. 19 (1984) 1692.Google Scholar
  2. 2.
    S. V. Nair, J. K. Tien andR. C. Bates.Int. Met. Rev. 30 (1985) 275.Google Scholar
  3. 3.
    S. Yajima, K. Okamura, J. Tanaka andT. Hayase,J. Mater. Sci. 16 (1981) 3033.Google Scholar
  4. 4.
    S. Dermarkar.Metals and Materials 2 (1986) 144.Google Scholar
  5. 5.
    J. C. Viala andJ. Bouix,Mater. Chem. Phys. 11 (1984) 101.Google Scholar
  6. 6.
    F. Delannay, L. Froyen andA. Deruyttere,J. Mater. Sci. 22 (1987) 1.Google Scholar
  7. 7.
    R. Naslain. in “Proceedings of the 1st European Conference on Composite Materials”, Bordeaux. France. 24 to 27 September 1985, edited by A. R. Bunsell, P. Lamicq and A. Massiah (European Association for Composite Materials, Bordeaux, 1985) p. 34.Google Scholar
  8. 8.
    T. Choh andT. Oki.Mater. Sci. Technol. 3 (1987) 1.Google Scholar
  9. 9.
    V. Laurent, D. Chatain andN. Eustathopoulos.J. Mater. Sci. 22 (1987) 244.Google Scholar
  10. 10.
    J. P. Rocher, J. M. Quenisset andR. Naslain,J. Mater. Sci. Lett. 4 (1985) 1527.Google Scholar
  11. 11.
    K. Prewo andG. McCarthy,J. Mater. Sci. 7 (1972) 919.Google Scholar
  12. 12.
    J. C. Viala, P. Fortier, C. Bernard andJ. Bouix.C.R. Acad. Sci. Paris. Ser. 2 299 (1984) 777.Google Scholar
  13. 13.
    J. C. Viala, P. Fortier, C. Bernard andJ. Bouix, in “Proceedings of the 1st European Conference on Composite Materials”, Bordeaux, France, 24 to 27 September 1985, edited by A. R. Bunsell, P. Lamicq and A. Massiah (European Association for Composite Materials, Bordeau. 1985) p. 583.Google Scholar
  14. 14.
    V. M. Bermudez,Appl. Phys. Lett. 42 (1983) 70.Google Scholar
  15. 15.
    L. Porte,J. Appl. Phys. 60 (1986) 635.Google Scholar
  16. 16.
    K. Kannikeswaran andR. Y. Lin,J. Met. 39 (1987) 17.Google Scholar
  17. 17.
    D. J. Lloyd, H. Lagace, A. McLeod andP. L. Morris,Mater. Sci. Eng. A107 (1989) 73.Google Scholar
  18. 18.
    J. C. Viala, P. Fortier, B. Bonnetot andJ. Bouix,Mater. Res. Bull. 21 (1986) 387.Google Scholar
  19. 19.
    J. Ruska, L. J. Gauckler andC. Petzow,Sci. Ceram. 9 (1977) 332.Google Scholar
  20. 20.
    J. C. Viala, P. Fortier andJ. Bouix,Ann. Chim. Fr. 11 (1986) 235.Google Scholar
  21. 21.
    Z. Inoue, Y. Inomata, H. Tanaka andH. Kawabata,J. Mater. Sci. 15 (1980) 575.Google Scholar
  22. 22.
    P. Dorner, Doctoral Thesis, Stuttgart (RFA), 22 June 1982.Google Scholar
  23. 23.
    V. J. Barczac,J. Amer. Ceram. Soc. (1961) 299.Google Scholar
  24. 24.
    G. Schneider, L. J. Gauckler, G. Petzow andA. Zangvil,ibid. 62 (1979) 574.Google Scholar
  25. 25.
    J. Schoennahl, B. Willer andM. Daire,J. Solid. State Chem. 52 (1984) 163.Google Scholar
  26. 26.
    B. L. Kidwell, L. L. Oden andR. A. McCune,J. Appl. Crystallogr. 17 (1984) 481.Google Scholar
  27. 27.
    L. L. Oden andR. A. McCune,Metal. Trans. 18A (1987) 2005.Google Scholar
  28. 28.
    R. P. Elliott, in “Constitution of Binary Alloys”, 1st Supplement (McGraw-Hill, New York, 1965) p. 55.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • J. C. Viala
    • 1
  • P. Fortier
    • 1
  • J. Bouix
    • 1
  1. 1.Laboratoire de Physico-chimie Minérale 1, U. A. CNRS 116Université Claude Bernard Lyon 1Villeurbanne CedexFrance

Personalised recommendations