Application of a generalized power transformation to geochemical data

  • R. J. Howarth
  • S. A. M. Earle


In the context of analysis of variance, Box and Cox (1964) developed a generalized technique for power transformation of frequency distributions to normality. It is here applied to geochemical data, based on the nonlinear optimization of skewness and kurtosis. The transform appears to be particularly well suited to the preprocessing of geochemical data prior to multivariate analysis.

Key words

geochemistry frequency distributions data transformation algorithm FORTRAN 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrens, L. H., 1954, The lognormal distribution of the elements: Geochem. Cosmochim. Acta, Part 1, v. 5, p. 49–73; Part 2, v. 6, p. 121–131.Google Scholar
  2. Andrews, D. F., 1971, A note on the selection of data transformations: Biometrika, v. 58, p. 249–254.Google Scholar
  3. Bartlett, M. S., 1947, The use of transformations: Biometrics, v. 3, p. 39–52.Google Scholar
  4. Box, G. E. P. and Cox, D. R., 1964, An analysis of transformations: J. Roy. Stat. Soc., Ser. B., v. 26, p. 211–243.Google Scholar
  5. Chapman, R. P., 1976, Some consequences of applying lognormal theory to pseudolognormal distributions: Math. Geol., v. 8, p. 209–214.Google Scholar
  6. Chapman, R. P., 1977, Log transformations in exploration geochemistry: Math. Geol., v. 9, p. 194–198.Google Scholar
  7. Draper, N. R. and Cox, D. R., 1969, On distributions and their transformation to normality: J. Roy. Stat. Soc., Ser. B., v. 31, p. 472–476.Google Scholar
  8. Draper, N. R. and Hunter, W. G., 1969, Transformations: Some examples revisited: Technometrics, v. 11, p. 23–40.Google Scholar
  9. Dunlap, W. P. and Duffy, J. A., 1974, A computer program for determining optimal data transformations minimizing skew: Behav. Res. Meth. Instru., v. 6, p. 46–48.Google Scholar
  10. Hinkley, D. V., 1975, On power transformations to symmetry: Biometrika, v. 62, p. 101–111.Google Scholar
  11. Himmleblau, D. M., 1972, Applied nonlinear programming (1st ed.): McGraw-Hill Book Co., New York, 498 p.Google Scholar
  12. Hoyle, M. H., 1973, Transformations—an introduction and bibliography: Int. Stat. Rev., v. 41, p. 203–223.Google Scholar
  13. Krumbein, W. C. and Graybill, F. A., 1965, An introduction to statistical models in geology (1st ed.): McGraw-Hill Book Co., New York, 475 p.Google Scholar
  14. Kuester, J. L. and Mize, J. H., 1973, Optimization techniques with Fortran (1st ed.): McGraw Hill, New York, 500 p.Google Scholar
  15. Lindqvist, L., 1976, SELLO, a Fortran IV program for the transformation of skewed distributions to normality: Comput. Geosci. v. 1, p. 129–145.Google Scholar
  16. Link, R. F. and Koch, G. S., 1975, Some consequences of applying lognormal theory to pseudolognormal distributions: Math. Geol., v. 7, p. 117–128.Google Scholar
  17. Maclean, C. J., Morton, N. E., Elston, R. C., and Yee, S., 1976, Skewness in commingled distributions: Biometrics, v. 32, p. 695–699.Google Scholar
  18. Miesch, A. T., 1977, Log transformations in geochemistry: Math. Geol. v. 9, p. 191–194.Google Scholar
  19. Miller, R. L. and Kahn, J. S., 1962, Statistical analysis in the geological sciences (1st ed.): John Wiley & Sons Inc., New York, 483 p.Google Scholar
  20. Nichol, I., Thornton, I., Webb, J. S., Fletcher, W. K., Horsnail, R. J., Khaleelee, J., and Taylor, D., 1970, Regional geochemical reconnaissance of the Denbighshire area: Rep. Inst. Geol. Sci. (London). no. 70/8, 40p.Google Scholar
  21. Shaw, D. M., 1961, Element distribution laws in geochemistry: Geochem. Cosmochim. Acta, v. 23, p. 116–134.Google Scholar
  22. Sinclair, A. J., 1976, Applications of probability graphs in mineral exploration: Association of Exploration Geochemists, Special Vol. no. 4, 96 p.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • R. J. Howarth
    • 1
  • S. A. M. Earle
    • 2
  1. 1.Applied Geochemistry Research GroupImperial College of Science and TechnologyLondonEngland
  2. 2.Saskatchewan Mining Development CorporationSaskatoon, SaskatchewanCanada

Personalised recommendations