Advertisement

Journal of Chemical Ecology

, Volume 13, Issue 10, pp 1993–2008 | Cite as

Cuticular hydrocarbons regulate mate recognition, male aggression, and female choice of the rove beetle,Aleochara curtula

  • K. Peschke
Article

Abstract

Immature, starved, or multiply mated males of the staphylinid beetle,Aleochara curtula, mimic their females chemically. The titer of the female sex pheromone components (Z)-7-heneicosene and (Z)-7-tricosene was quantified for various physiological types and both sexes by gas chromatography and correlated with the sexual response of males towards the cuticular hydrocarbon fractions. Modulation of intermale aggression by production of the female pheromone was shown by (1) reduction of the alkene titer of females kept at elevated temperatures, (2) treating live males with the synthetic female pheromone mixture, and (3) gradual amputation of male antennal segments.A. curtula males do not fight against members of otherAleochara species with a different hydrocarbon pattern. Contamination ofA. peschkei males with the hydrocarbon fraction ofA. curtula males, however, provoked the release of aggression. Choosy females reject mating attempts of males bearing the female sex pheromone.

Key words

Aleochara curtula Coleoptera Staphylinidae female sex pheromone cuticular hydrocarbons chemical mimicry male aggression female choice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlson, D.A., Langley, P.A., andHuyton, P.M. 1978. Sex pheromone of the tsetse fly: Isolation, identification and synthesis of contact aphrodisiacs.Science 201:750–753.PubMedGoogle Scholar
  2. Clement, J.L., andLange, C. 1984. Variation of cuticular compounds and inter and intraspecific aggressive behaviour in termite species of the genusReticulitermes. Abstract XVII International Congress on Entomology. Hamburg, p. 480.Google Scholar
  3. Fuldner, D. 1968. Experimentelle Analyse des Orientierungsverhaltens der Eilarve vonAleochara curtula Goeze (Coleoptera: Staphylinidae) am Wirt.Z. Vergl. Physiol. 61:298–354.Google Scholar
  4. Grula, J.W., McChesney, J.D., andTaylor, O.K., Jr. 1980. Aphrodisiac of the sulfur butterfliesCollas eurytheme and C.philodice (Lepidoptera, Pieridae).J. Chem. Ecol. 6:241–256.Google Scholar
  5. Hadley, N.F. 1977. Epicuticular lipids of the desert tenebrionid beetle,Eleodes armata: Seasonal and acclimatory effects on composition.Insect Biochem. 7:277–283.Google Scholar
  6. Howard, R.W., andBlomquist, G.J. 1982. Chemical ecology of insect hydrocarbons.Annu. Rev. Entomol. 27:149–172.Google Scholar
  7. Howard, R.W., Mcüaniel, C.A., andBlomquist, G.J. 1978. Cuticular hydrocarbons of the eastern subterranean termite,Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae).J. Chem. Ecol. 4:233–245.Google Scholar
  8. Howard, R.W., Mcüaniel, C.A., andBlomquist, G.J. 1980. Chemical mimicry as an integrating mechanism: cuticular hydrocarbons of a termitophile and its host.Science 210:431–433.Google Scholar
  9. Howard, R.W., McDaniel, C.A., Nelson, D.R., Blomquist, G.J., Gelbaum, T., andZalkow, I.H. 1982a. Cuticular hydrocarbons ofReticulitermes virginicus (Banks) and their role as potential species and caste-recognition cues.J. Chem. Ecol. 8:1227–1239.Google Scholar
  10. Howard, R.W., McDaniel, C.A., andBlomquist, G.J. 1982b. Chemical mimicry as an integrating mechanism for three termitophiles associated withReticulitermes virginicus (Banks).Psyche 89:157–167.Google Scholar
  11. Huyton, P.M., Langley, P.A., Carlson, D.A., andCoates, T.W. 1980a. The role of sex pheromones in initiation of copulatory behaviour by male tsetse flies,Glossina morsitans morsitans.Physiol. Entomol. 5:243–252.Google Scholar
  12. Huyton, P.M., Langley, P.A., Carlson, D.A., andSchwarz, M. 1980b. Specificity of contact sex pheromones in tsetse flies,Glossina spp.Physiol. Entomol. 5:253–264.Google Scholar
  13. Jallon, J.M. 1984. A few chemical words exchanged byDrosophila during courtship and mating.Behav. Genet. 14:441–478.PubMedGoogle Scholar
  14. Likovsky, Z. 1983. Bemerkungen überAleochara-Arten der afrikanischen Region (Coleoptera, Staphylinidae).Annot. Zool. Bot. 152:1–18.Google Scholar
  15. Lok, J.B., Cupp, E.W., andBlomquist, G.J. 1975. Cuticular lipids of the imported fire ants,Solenopsis invicta andS. richteri.Insect Biochem. 5:821–829.Google Scholar
  16. Mason, R.T., andCrews, D. 1985. Female mimicry in garter snakes.Nature 316:59–60.PubMedGoogle Scholar
  17. Peschke, K. 1978. The female sex pheromone of the staphylinid beetle,Aleochara curtula.J. Insect Physiol. 24:197–200.Google Scholar
  18. Peschke, K. 1985. Immature males ofAleochara curtula avoid intrasexual aggression by producing the female sex pheromone.Natunvissenschaften 72:274.Google Scholar
  19. Peschke, K. 1986. Development, sex specificity, and site of production of aphrodisiac pheromones inAleochara curtula.J. Insect Physiol. 32:687–693.Google Scholar
  20. Peschke, K. 1987. Male aggression, female mimicry and female choice in the rove beetle,Aleochara curtula (Coleoptera, Staphylinidae).Ethology (In press).Google Scholar
  21. Peschke, K., andFuldner, D. 1977. Übersicht und neue Untersuchungen zur Lebensweise der parasitoiden Aleocharinae (Coleoptera; Staphylinidae).Zool. Jb. Syst. 104:242–262.Google Scholar
  22. Peschke, K., andMetzler, M. 1982. Defensive and pheromonal secretion of the tergal gland ofAleochara curtula. I. The chemical composition.J. Chem. Ecol. 8:773–783.Google Scholar
  23. Peschke, K., andMetzler, M. 1986. Cuticular hydrocarbons and female sex pheromones of the rove beetle,Aleochara curtula (Coleoptera, Staphylinidae).Insect Biochem. 17:167–178.Google Scholar
  24. Peschke, K., Krapf, D., andFuldner, D. 1987. Ecological separation, functional relationships, and limited resources in a carrion insect community.Zool. Jb. Syst. 114:241–265.Google Scholar
  25. Rogoff, W.M., Gretz, G.H., Sonnet, P.E., andSchwarz, M. 1980. Responses of male house flies to muscalure and to combinations of hydrocarbons with and without muscalure.Environ. Entomol. 9:605–606.Google Scholar
  26. Sachs, L. 1984. Angewandte Statistik. Springer-Verlag, Heidelberg.Google Scholar
  27. Sonnet, P.E., Uebel, E.C., andMiller, R.W. 1975. Sex pheromone of the face fly and compounds influencing pheromone activity.Environ. Entomol. 4:761–764.Google Scholar
  28. Sonnet, P.E., Uebel, E.G., Harris, R.L., andMiller, R.W. 1977. Sex pheromone of the stable fly: evolution of methyl- and 1,5-dimethylalkanes as mating stimulants.J. Chem. Ecol. 3:245–249.Google Scholar
  29. Thornhill, R. 1979. Adaptive female-mimicking behavior in a scorpionfly.Science 205:412–414.Google Scholar
  30. Toolson, E.C., andHadley, N.F. 1977. Cuticular permeability and epicuticular lipid composition in two Arizona vejovid scorpions.Physiol. Zool. 50:323–330.Google Scholar
  31. Uebel, E.C., Sonnet, P.E., Miller, R.W., andBeroza, M. 1975a. Sex pheromone of the face fly,Musca autumnalis De Geer (Diptera: Muscidae).J. Chem. Ecol. 1:195–202.Google Scholar
  32. Uebel, E.C., Sonnet, P.E., Bierl, B.A., andMiller, R.W. 1975b. Sex pheromone of the stable fly: Isolation and preliminary identification of compounds that induce mating strike behavior.J. Chem. Ecol. 1:377–385.Google Scholar
  33. Uebel, E.C., Sonnet, P.E., andMiller, R.W. 1976. House fly sex pheromones: Enhancement of mating strike activity by combination of (Z)-9-tricosene with branched saturated hydrocarbons.Environ. Entomol. 5:905–908.Google Scholar
  34. Vander Meer, R.K., andWojcik, D.P. 1982. Chemical mimicry in the myrmecophilous beetleMyrmecaphodius excavaticollis.Science 218:806–808.Google Scholar
  35. Weldon, P.J., andBurghardt, G. 1984. Deception divergence and sexual selection.Z. Tierpsychol. 65:89–102.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • K. Peschke
    • 1
  1. 1.Zoologisches Institut III der Universität WürzburgWürzburgFRG

Personalised recommendations