Advertisement

Journal of Mammalian Evolution

, Volume 1, Issue 2, pp 127–147 | Cite as

Monophyly or polyphyly of the order Rodentia: Possible conflict between morphological and molecular interpretations

  • W. P. Luckett
  • J. -L. Hartenberger
Article

Abstract

Recent analyses of amino acid sequence data from selected proteins inCavia, Rattus, Homo, Bos, Sus, and a few additional rodents and other eutherians suggested that Rodentia is not a monophyletic taxon and thatCavia and other hystricognaths may have branched off earlier than the separation between Muroidea and Primates during mammalian evolution. Because this hypothesis of polyphyly is contrary to the otherwise unanimous recognition of rodent monophyly, we have reevaluated the morphological and developmental evidence from the cranium, dentition, postcranial skeleton, and fetal membranes for the taxa Hystricognathi, Muroidea, other Rodentia, Primates, Artiodactyla, and Lagomorpha, as well as for the eutherian morphotype. Our character analyses provide strong corroboration for the traditional hypothesis of rodent monophyly and lend additional support to the suggestion that Lagomorpha is the sister taxon of Rodentia. Our survey of published molecular data furnishes little or no support for the proposed hypothesis of rodent polyphyly. We conclude that this hypothesis is the result of poor sampling of sequence data from rodents and other eutherians, rather than any inherent difficulties in the use of molecular evidence for the assessment of mammalian evolution. The available molecular data suggest thatCavia differs considerably from other hystricognaths in many proteins, but the reasons for this remain to be investigated.

Key words

Rodentia monophyly polyphyly morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Allard, M. W., Miyamoto, M. M., and Honeycutt, R. L. (1991). Tests for rodent polyphyly.Nature 353 610–611.Google Scholar
  2. Andrews, P. (1988). A phylogenetic analysis of the Primates. In Benton, M. J. (ed.),The Phylogeny and Classification of the Tetrapods, Vol. 2. Mammals, Clarendon Press, Oxford, pp. 143–175.Google Scholar
  3. Beintema, J. J. (1985). Amino acid sequence data and evolutionary relationships among hystricognaths and other rodents. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 549–565.Google Scholar
  4. Beintema, J. J., and Campagne, R. N. (1987). Molecular evolution of rodent insulins.Mol. Biol. Evol. 4 10–18.Google Scholar
  5. Beintema, J. J., and Lenstra, J. A. (1982). Evolution of mammalian pancreatic ribonucleases. In Goodman, M. (ed.),Macromolecular Sequences in Systematic and Evolutionary Biology, Plenum Press, New York, pp. 43–73.Google Scholar
  6. Beintema, J. J., Fitch, W. M., and Carsana, A. (1986). Molecular evolution of pancreatic-type ribonucleases.Mol. Biol. Evol. 3 262–275.Google Scholar
  7. Beintema, J. J., Rodewald, K., Braunitzer, G., Czelusniak, J., and Goodman, M. (1991). Studies on the phylogenetic position of the Ctenodactylidae (Rodentia).Mol. Biol. Evol. 8 151–154.Google Scholar
  8. Brandt, J. F. (1855). Beiträge zur nähern Kenntniss der Säugethiere Russlands.Mém. Acad. Imp. Sci. Pétersbourg 6(9): 1–375.Google Scholar
  9. Carleton, M. D. (1984). Introduction to rodents. In Anderson, S., and Jones, J. K., Jr. (eds.),Orders and Families of Recent Mammals, John Wiley and Sons, New York, pp. 255–265.Google Scholar
  10. Cuvier, G. (1800–1805).Leçons d'Anatomie Comparée, 5 vol., Baudouin, Paris.Google Scholar
  11. Czelusniak, J., Goodman, M., Koop, B. F., Tagle, D. A., Shoshani, J., Braunitzer, G., Kleinschmidt, T. K., De Jong, W. W., and Matsuda, G. (1990). Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria. In Genoways, H. H. (ed.),Current Mammalogy, Vol. 2, Plenum Press, New York, pp. 545–572.Google Scholar
  12. De Blainville, H. M. D. (1816). Prodrome d'une nouvelle distribution systématique du règne animal.Bull. Sci. Soc. Philom. Paris Sér. 3 3 105–124.Google Scholar
  13. De Jong, W. W. (1985). Superordinal affinities of Rodentia studied by sequence analysis of eye lens protein. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 211–226.Google Scholar
  14. Eisenberg, J. F. (1989).Mammals of the Neotropics. The Northern Neotropics, Vol. 1, University of Chicago Press, Chicago.Google Scholar
  15. Ellerman, J. R. (1940).The Families and Genera of Living Rodents, Vol. 1, British Museum (Natural History), London.Google Scholar
  16. Fitch, W. M., and Beintema, J. J. (1990). Correcting parsimonious trees for unseen nucleotide substitutions: The effect of dense branching as exemplified by ribonuclease.Mol. Biol. Evol. 7 438–443.Google Scholar
  17. Friday, A. (1987). Models of evolutionary change and the estimation of evolutionary trees. In Harvey, P. H., and Partridge, L. (eds.),Oxford Surveys in Evolutionary Biology, Vol. 4, Oxford University Press, Oxford, pp. 61–88.Google Scholar
  18. Gidley, J. W. (1912). The lagomorphs an independent order.Science 36 285–286.Google Scholar
  19. Goodman, M., Romero-Herrera, A. E., Dene, H., Czelusniak, J., and Tashian, R. E. (1982). Amino acid sequence evidence on the phylogeny of primates and other eutherians. In Goodman, M. (ed.),Macromolecular Sequences in Systematic and Evolutionary Biology, Plenum Press, New York, pp. 115–191.Google Scholar
  20. Goodman, M., Czelusniak, J., and Beeber, J. E. (1985). Phylogeny of primates and other eutherian orders: A cladistic analysis using amino acid and nucleotide sequence data.Cladistics 1 171–185.Google Scholar
  21. Grassé, P.-P., and Dekeyser, P. L. (1955). Ordre des Rongeurs. In Grassé, P.-P. (ed.),Traité de Zoologie. Anatomie, Systématique, Biologie, Vol. 17(II), Masson et Cie, Paris, pp. 1321–1525.Google Scholar
  22. Graur, D., Hide, W. A., and Li, W.-H. (1991). Is the guinea-pig a rodent?Nature 351 649–652.Google Scholar
  23. Graur, D., Hide, W. A., Zharkikh, A., and Li, W.-H. (1992). The biochemical phylogeny of guinea pigs and gundis, and the paraphyly of the order Rodentia.Comp. Biochem. Physiol. B. Comp. Biochem. 101 495–498.Google Scholar
  24. Gregory, W. K. (1910). The orders of mammals.Bull. Am. Mus. Nat. Hist. 27 1–524.Google Scholar
  25. Hartenberger, J.-L. (1977). A propos de l'origine des Rongeurs.Géobios, Mém. Spéc. 1 183–193.Google Scholar
  26. Hartenberger, J.-L. (1980). Données et hypothèses sur la radiation initiale des Rongeurs.Palaeovert. Mém. Jub. R. Lavocat, pp. 258–301.Google Scholar
  27. Hartenberger, J.-L. (1985). The order Rodentia: Major questions on their evolutionary origin, relationships and suprafamilial systematics. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 1–33.Google Scholar
  28. Hasegawa, M., Cao, Y., Adachi, J., and Yano, T.-A. (1992). Rodent polyphyly?Nature 355 595.Google Scholar
  29. Hendriks, W., Leunissen, J., Nevo, E., Blemendal, H., and De Jong, W. W. (1987). The lens protein α A-crystallin of the blind mole rat,Spalax ehrenbergi: Evolutionary change and functional constraints.Proc. Natl. Acad. Sci. USA 84 5320–5324.Google Scholar
  30. Hennig, W. (1950).Grundzüge einer Theorie der phylogenetischen Systematik, Deutscher Zentralverlag, Berlin.Google Scholar
  31. Hennig, W. (1966).Phylogenetic Systematics, University of Illinois Press, Urbana.Google Scholar
  32. Jaeger, J.-J. (1988). Rodent phylogeny: New data and old problems. In Benton, M. J. (ed.),The Phylogeny and Classification of the Tetrapods, Vol. 2. Mammals, Clarendon Press, Oxford, pp. 177–199.Google Scholar
  33. Kleinschmidt, T., Nevo, E., Goodman, M., and Braunitzer, G. (1985). Mole rat hemoglobin: Primary structure and evolutionary aspects in a second karyotype ofSpalax ehrenbergi, Rodentia (2n=52).Biol. Chem. Hoppe-Seyler 366 679–685.Google Scholar
  34. Koenigswald, W. von (1985). Evolutionary trends in the enamel of rodent incisors. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 403–422.Google Scholar
  35. Li, C.-K., and Ting, S.-Y. (1985). Possible phylogenetic relationship of Asiatic eurymylids and rodents, with comments on mimotonids. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 35–58.Google Scholar
  36. Li, C.-K., Wilson, R. W., Dawson, M. R., and Krishtalka, L. (1987). The origin of rodents and lagomorphs. In Genoways, H. H. (ed.),Current Mammalogy, Vol. 1, Plenum Press, New York, pp. 97–108.Google Scholar
  37. Li, C.-K., Zheng, J.-J., and Ting, S.-Y. (1989). The skull ofCocomys lingchaensis, an early Eocene ctenodactyloid rodent of Asia.Nat. Hist. Mus. Los Angeles Co. Sci. Ser. 33 179–192.Google Scholar
  38. Li, W.-H., Hide, W. A., Zharkikh, A., Ma, D.-P., and Graur, D. (1992). The molecular taxonomy and evolution of the guinea pig.J. Hered. 83 174–181.Google Scholar
  39. Linnaeus, C. (1735).Systema naturae, sive regna tria naturae systematice proposita per classes, ordines, genera et species, Fol. Lugduni, Batavorum.Google Scholar
  40. Linnaeus, C. (1758),Systema naturae per regna tria naturae, secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis, Editio decima reformata, Vol. 1, Laurentii Salvii, Stockholm.Google Scholar
  41. Luckett, W. P. (1977). Ontogeny of amniote fetal membranes and their application to phylogeny. In Hecht, M. K., Goody, P. C., and Hecht, B. M. (eds.),Major Patterns in Vertebrate Evolution, Plenum Press, New York, pp. 439–516.Google Scholar
  42. Luckett, W. P. (1980). The suggested evolutionary relationships and classification of tree shrews. In Luckett, W. P. (ed.),Comparative Biology and Evolutionary Relationships of Tree Shrews, Plenum Press, New York, pp. 3–31.Google Scholar
  43. Luckett, W. P. (1985). Superordinal and intraordinal affinities of rodents: Developmental evidence from the dentition and placentation. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 227–276.Google Scholar
  44. Luckett, W. P. (1993). An ontogenetic assessment of dental homologies in therian mammals. In Szalay, F. S., Novacek, M. J., and McKenna, M. C. (eds.),Mammal Phylogeny, Springer-Verlag, New York, pp. 182–204.Google Scholar
  45. Luckett, W. P., and Hartenberger, J.-L. (eds.) (1985a).Evolutionary Relationships Among Rodents, Plenum Press, New York.Google Scholar
  46. Luckett, W. P., and Hartenberger, J.-L. (1985b). Evolutionary relationships among rodents: Comments and conclusions. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 685–712.Google Scholar
  47. MacPhee, R. D. E. (1981). Auditory regions of primates and eutherian insectivores.Contrib. Primatol. 18 1–282.Google Scholar
  48. Martin, R. D. (1990).Primate Origins and Evolution, Chapman and Hall, London.Google Scholar
  49. McKenna, M. C. (1982). Lagomorph interrelationships.Geobios Mém. Spéc. 6 213–223.Google Scholar
  50. Miyamoto, M. M., and Goodman, M. (1986). Biomolecular systematics of eutherian mammals: Phylogenetic patterns and classification.Syst. Zool. 35 230–240.Google Scholar
  51. Moeller, H. (1974). Nagezähne bei Eutheria und Metatheria. Ein Beitrag zur Kenntnis von Konvergenzer-scheinungen bei Säugern.Säug. Mitt. 22 112–122.Google Scholar
  52. Mossman, H. W. (1937). Comparative morphogenesis of the fetal membranes and accessory uterine structures.Contrib. Embryol. Carneg. Inst. 26 129–246.Google Scholar
  53. Mossman, H. W. (1987).Vertebrate Fetal Membranes, Rutgers University Press, New Brunswick, NJ.Google Scholar
  54. Novacek, M. J. (1980). Cranioskeletal features in tupaiids and selected Eutheria as phylogenetic evidence. In Luckett, W. P. (ed.),Comparative Biology and Evolutionary Relationships of Tree Shrews, Plenum Press, New York, pp. 35–93.Google Scholar
  55. Novacek, M. J. (1985). Cranial evidence for rodent affinities. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 59–81.Google Scholar
  56. Novacek, M. J. (1990). Morphology, paleontology, and the higher clades of mammals. In Genoways, H. H. (ed.),Current Mammalogy, Vol. 2, Plenum Press, New York, pp. 507–543.Google Scholar
  57. Prothero, D. R., Manning, E. M., and Fischer, M. (1988). The phylogeny of the ungulates. In Benton, M. J. (ed.),The Phylogeny and Classification of the Tetrapods, Vol. 2. Mammals, Clarendon Press, Oxford, pp. 201–234.Google Scholar
  58. Ray, J. (1693).Synopsis methodica animalium quadrupedum et serpentini generis, S. Smith and B. Walford, London.Google Scholar
  59. Romero-Herrera, A. E., Lehmann, H., Joysey, K. A., and Friday, A. E. (1978). On the evolution of myoglobin.Phil. Trans. Roy. Soc. Lond. B 283 61–163.Google Scholar
  60. Sarich, V. M. (1985). Rodent macromolecular systematics. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 423–452.Google Scholar
  61. Shoshani, J. (1986). Mammalian phylogeny: Comparison of morphological and molecular results.Mol. Biol. Evol. 3 222–242.Google Scholar
  62. Shoshani, J., Goodman, M., Czelusniak, J., and Braunitzer, G. (1985). A phylogeny of Rodentia and other eutherian orders: Parsimony analysis utilizing amino acid sequences of alpha and beta hemoglobin chains. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 191–210.Google Scholar
  63. Szalay, F. S. (1977). Phylogenetic relationships and a classification of the eutherian Mammalia. In Hecht, M. K., Goody, P. C., and Hecht, B. M. (eds.),Major Patterns in Vertebrate Evolution, Plenum Press, New York, pp. 317–374.Google Scholar
  64. Szalay, F. S. (1985). Rodent and lagomorph morphotype adaptations, origins, and relationships: Some postcranial attributes analyzed. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 83–132.Google Scholar
  65. Szalay, F. S., Rosenberger, A. L., and Dagosto, M. (1987). Diagnosis and differentiation of the order Primates.Yrb. Phys. Anthropol. 30 75–105.Google Scholar
  66. Tullberg, T. (1899). Ueber das System der Nagetiere: Eine phylogenetische Studie.Nova Acta Reg. Soc. Sci. Upsala Ser. 3 18 1–514.Google Scholar
  67. Weber, M. (1904).Die Säugetiere, Gustav Fischer Verlag, Jena.Google Scholar
  68. Wood, A. E. (1957). What, if anything is a rabbit?Evolution 11 417–425.Google Scholar
  69. Wood, A. E. (1985). The relationships, origin and dispersal of the hystricognathous rodents. In Luckett, W. P., and Hartenberger, J.-L. (eds.),Evolutionary Relationships Among Rodents, Plenum Press, New York, pp. 475–513.Google Scholar
  70. Woods, C. A. (1982). The history and classification of South American hystricognath rodents: Reflections on the far away and long ago. In Mares, M. A., and Genoways, H. H. (eds.),Mammalian Biology in South America, University of Pittsburgh Pymatuning Lab of Ecology, Linesville, pp. 377–392.Google Scholar
  71. Wriston, J. C., Jr. (1981). Biochemical peculiarities of the guinea pig and some possible examples of convergent evolution.J. Mol. Evol. 17 1–9.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • W. P. Luckett
    • 2
  • J. -L. Hartenberger
    • 1
  1. 1.Institut des Sciences de l'EvolutionUniversité Montpellier IIMontpellier Cedex 5France
  2. 2.Department of AnatomyUniversity of Puerto Rico, School of MedicineSan Juan, Puerto RicoUSA

Personalised recommendations