Intercalation of dodecyl sulfate into layered double hydroxides

  • A. Clearfield
  • M. Kieke
  • J. Kwan
  • J. L. Colon
  • R. -C. Wang
Article

Abstract

The intercalation of sodium dodecyl sulfate and exchange of dodecyl sulfate anion into layered double hydroxides has been examined by means of X-ray diffraction, infrared and thermogravimetric procedures. Three types of derivatives were obtained having mean interlayer spacings of ≈26 Å, 36 Å and 47 Å, respectively. These interlayer distances did not correlate with the amount of organic incorporated between the layers but, as shown by computer simulations, depended upon the orientation of the chains within the interlamellar space. In several reactions both intercalation of neutral sodium dodecyl sulfate as well as exchange of the dodecyl anion took place. Attempts to remove the alkyl sulfate chains with dilute acid resulted in dissolution of the more basic metals producing non-stoichiometric layered products.

Key words

Intercalation X-ray powder diffraction infrared thermogravimetric analysis dodecyl sulfate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. T. Reichle:Chemtech 58 (1986).Google Scholar
  2. 2.
    R. Allmann:Chimia 24, 99 (1970).Google Scholar
  3. 3.
    G. Brown and M. C. Gastuche:Clay Miner. 7, 193 (1967).Google Scholar
  4. 4.
    L. Ingram and H. F. Taylor:Miner. Mag. 36, 465 (1967).Google Scholar
  5. 5.
    W. T. Reichle:Solid State Ionics 22, 15 (1986).Google Scholar
  6. 6.
    K. A. Carrado, A. Kostapapas and S. Suib:Solid State Ionics 26, 77 (1988).Google Scholar
  7. 7.
    S. Miyata:Clays Clay Miner. 31, 365 (1983).Google Scholar
  8. 8.
    A. Mediboure and R. Schollhorn:Rev. Chim. Miner. 23, 819 (1986).Google Scholar
  9. 9.
    M. A. Drezdon:Inorg. Chem. 27, 4628 (1988).Google Scholar
  10. 10.
    T. Kwan, G. A. Tsigdinos and T. J. Pinnavaia:J. Am. Chem. Soc. 110, 3653 (1988).Google Scholar
  11. 11.
    T. Kwan and T. J. Pinnavaia:Chem. Mater. 1, 381 (1989).Google Scholar
  12. 12.
    E. D. Dimotakis and T. J. Pinnavaia:Inorg. Chem. 29, 2993 (1990).Google Scholar
  13. 13.
    W. T. Reichle:J. Catal. 94, 547 (1985).Google Scholar
  14. 14.
    T. J. Pinnavaia, M. Rameswaran, E. G. Demotakis, E. P. Grannelis and E. G. Rightor:Faraday Discuss. Chem. Soc. 87, 227 (1989).Google Scholar
  15. 15.
    S. Miyata and T. Kimura:Chem. Lett. Jpn. 843 (1973).Google Scholar
  16. 16.
    E. T. Iyagba: Ph.D. Dissertation, University of Pittsburg, PA, 1986.Google Scholar
  17. 17.
    K. Chibwe and W. Jones:J. Chem. Soc., Chem. Commun. 926 (1989).Google Scholar
  18. 18.
    H.-P. Boehm, J. Steinle and C. Vieweger:Angew. Chem., Int. Ed. Engl. 16, 265 (1977).Google Scholar
  19. 19.
    H. Kopka, K. Beneke and G. Lagaly:J. Colloid Interface Sci. 123, 427 (1988).Google Scholar
  20. 20.
    M. Lal and A. T. Howe:J. Solid State Chem. 39, 368 (1981).Google Scholar
  21. 21.
    G. Lagaly:Angew. Chem. Int. Ed. Engl. 15, 575 (1976).Google Scholar
  22. 22. (a)
    CRYSTALS, D. Watkin,Chem. Crystallogr. Lab. Oxford, England; (b)MOGLI, Evans & Sutherland Corp., Salt Lake City, Utah; (c)COSMIC, J. G. Vinter, A. Davis and M. R. Saunders,J. Mol. Design,1 31 (1987).Google Scholar
  23. 23.
    R. Allmann and H. H. Lohse:N. Jahr. f. Mineral Monat. 161 (1966); R. Allmann,Acta Crystallogr. B24, 972 (1968);Chimia 24, 99 (1970).Google Scholar
  24. 24.
    S. Sundell:Acta. Chem. Scand. A31, 799 (1971).Google Scholar
  25. 25.
    S. K. Ghabru, A. R. Mermut and R. J. Arnaud:Clays Clay Miner. 37, 164 (1989).Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • A. Clearfield
    • 1
  • M. Kieke
    • 1
  • J. Kwan
    • 1
  • J. L. Colon
    • 1
  • R. -C. Wang
    • 1
  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations