Advertisement

Theoretical and Mathematical Physics

, Volume 102, Issue 2, pp 188–207 | Cite as

Point interactions in the problem of three quantum particles with internal structure

  • K. A. Makarov
  • V. V. Melezhik
  • A. K. Motovilov
Article
  • 50 Downloads

Abstract

A system of three quantum particles with internal structure in which the two-body interactions are point interactions and are described in terms of two-channel Hamiltonians is considered. It is established that in the cases when the parameters of the model are such that the total Hamiltonian of the three-particle system is semibounded the Faddeev equations are Fredholm equations. Boundary conditions are formulated for the differential Faddeev equations whose solutions are the scattering wave functions.

Keywords

Boundary Condition Wave Function Internal Structure Point Interaction Quantum Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Fermi,Ricerca Scientifica,7, 13 (1936).Google Scholar
  2. 2.
    R. de L. Kronig and W. G. Penney,Proc. R. Soc. London, Ser. A,130, 499 (1931).Google Scholar
  3. 3.
    H. Bethe and R. Peierls,Proc. R. Soc. London, Ser. A,148, 146 (1935).Google Scholar
  4. 4.
    F. A. Berezin and L. D. Faddeev,Dokl. Akad. Nauk SSSR,137, 1011 (1961).Google Scholar
  5. 5.
    S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden,Solvable Models in Quantum Mechanics, Springer-Verlag, New York (1988).Google Scholar
  6. 6.
    R. A. Minlos and L. D. Faddeev,Dokl. Akad. Nauk SSSR,141, 1335 (1961).Google Scholar
  7. 7.
    B. S. Pavlov,Mat. Sb.,136, (178), 163 (1988).Google Scholar
  8. 8.
    G. V. Skornyakov and K. A. Ter-Martiosyan,Zh. Eksp. Teor. Fiz.,31, 775 (1956).Google Scholar
  9. 9.
    L. D. Faddeev,Zh. Eksp. Teor. Fiz.,39, 1459 (1960).Google Scholar
  10. 10.
    G. S. Danilov,Zh. Eksp. Teor. Fiz.,40, 498 (1961).Google Scholar
  11. 11.
    L. D. Faddeev,Tr. Mosk. Inst. Akad. Nauk SSSR,69, 1 (1963).Google Scholar
  12. 12.
    L. H. Thomas,Phys. Rev.,47, 903 (1935).Google Scholar
  13. 13.
    R. G. Newton,Scattering Theory of Waves and Particles, Springer-Verlag (1982).Google Scholar
  14. 14.
    Yu. G. Shondin,Teor. Mat. Fiz.,51, 181 (1982).Google Scholar
  15. 15.
    L. E. Thomas,Phys. Rev. D,30, 1233 (1984).Google Scholar
  16. 16.
    Yu. G. Shondin,Teor. Mat. Fiz.,74, 331 (1988).Google Scholar
  17. 17.
    B. S. Pavlov,Teor. Mat. Fiz.,59, 345 (1984).Google Scholar
  18. 18.
    B. S. Pavlov,Usp. Mat. Nauk,42, 99 (1987).Google Scholar
  19. 19.
    B. S. Pavlov and A. A. Shushkov,Mat. Sb.,137 (179), 147 (1988).Google Scholar
  20. 20.
    A. K. Motovilov,Teor. Mat. Fiz.,97, 163 (1993).Google Scholar
  21. 21.
    K. A. Makarov, Preprint FUB/HEP-88-3, FUB, Berlin (1988).Google Scholar
  22. 22.
    K. A. Makarov,Algebra i Analiz,4, 155 (1992).Google Scholar
  23. 23.
    Yu. A. Kuperin, K. A. Makarov, S. P. Merkur'ev, A. K. Motovilov, and B. S. Pavlov, in:Proceedings of Third All-Union School on Few-Particle and Quark—Hadron Systems [in Russian], Vil'nyus (1986), Part II, p. 28.Google Scholar
  24. 24.
    Yu. A. Kuperin, K. A. Makarov, S. P. Merkur'ev, A. K. Motovilov, and B. S. Pavlov,Teor. Mat. Fiz.,76, 242 (1988).Google Scholar
  25. 25.
    Yu. A. Kuperin, K. A. Makarov, S. P. Merkur'ev, and A. K. Motovilov,Yad. Fiz.,48, 358 (1988).Google Scholar
  26. 26.
    S. P. Merkur'ev and L. D. Faddeev,Quantum Theory of Scattering for Several-Particle Systems [in Russian], Nauka, Moscow (1985).Google Scholar
  27. 27.
    V. S. Vladimirov,Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1979).Google Scholar
  28. 28.
    S. P. Merkur'ev, A. K. Motovilov, and S. L. Yakovlev,Teor. Mat. Fiz.,94, 435 (1993).Google Scholar
  29. 29.
    V. S. Buslaev,Izy. Akad. Nauk SSSR, Ser. Mat.,39, 149 (1975).Google Scholar
  30. 30.
    M. V. Fedoryuk,The Method of Steepest Descent [in Russian], Nauka, Moscow (1977).Google Scholar
  31. 31.
    A. K. Motovilov,Vestn. Leningr. Univ., No. 22, 76 (1983).Google Scholar

Copyright information

© Plenum Pulishing Corporation 1995

Authors and Affiliations

  • K. A. Makarov
  • V. V. Melezhik
  • A. K. Motovilov

There are no affiliations available

Personalised recommendations