Advertisement

Journal of Statistical Physics

, Volume 17, Issue 4, pp 171–187 | Cite as

A generalized stochastic liouville equation. Non-Markovian versus memoryless master equations

  • Fumiaki Shibata
  • Yoshinori Takahashi
  • Natsuki Hashitsume
Articles

Abstract

The interrelation between the well-known non-Markovian master equation and the new memoryless one used in the previous paper is clarified on the basis of damping theory. The latter equation is generalized to include cases in which the Hamiltonian or the Liouvillian is a random function of time, and is written in a form feasible for perturbational analysis. Thus, the existing stochastic theory in which those cases mentioned above are discussed is equipped with a more tractable basic equation. Two problems discussed in the previous paper, i.e., the random frequency modulation of a quantal oscillator and the Brownian motion of a spin, are treated from the viewpoint of the stochastic theory without such explicit consideration of external reservoirs as was taken in the previous paper.

Key words

Statistical mechanics damping theory master equation Brownian motion quantal oscillator spin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Zwanzig,Physica 30:1109 (1964); F. Haake, inSpringer Tracts in Modern Physics, No. 66 (1973), p. 98; R. Kubo, inLectures at Sitges International School of Statistical Mechanics, 1974, L. Garrid, ed. (Springer Verlag, Berlin, 1975), and references cited therein.Google Scholar
  2. 2.
    M. Tokuyama and H. Mori,Prog. Theor. Phys. 55:411 (1976).Google Scholar
  3. 3.
    A. Fulinski and W. J. Kramarczyk,Physica 39:575 (1968); T. Shimizu,J. Phys. Soc. Japan 28:1088 (1970); V. P. Vstovsky,Phys. Lett. 44:283 (1973).Google Scholar
  4. 4.
    N. Hashitsume, F. Shibata, and M. Shing¯u,J. Stat. Phys. 17:155 (1977).Google Scholar
  5. 5.
    R. Kubo, inFluctuation, Relaxation and Resonance in Magnetic Systems, D. ter Haar, ed. (Oliver and Boyd, Edinburgh, 1962), p. 23;J. Math. Phys. 4:174 (1963);Adv. Chem. Phys. 16:101 (1969).Google Scholar
  6. 6.
    R. J. Glauber,Phys. Rev. 131:2766 (1963); G. S. Agarwal and E. Wolf,Phys. Rev. D 2:2161, 2187, 2206 (1970).Google Scholar
  7. 7.
    Y. Takahashi and F. Shibata,J. Phys. Soc. Japan 38:656 (1975);J. Stat. Phys. 14:49 (1976).Google Scholar
  8. 8.
    R. Kubo and N. Hashitsume,Prog. Theor. Phys. Suppl. 46:210 (1970).Google Scholar
  9. 9.
    P. Hänggi and H. Thomas,Z. Phys. B. 26:85 (1977).Google Scholar
  10. 10.
    H. Grabert, P. Talkner, and P. Hänggi,Z. Phys. B. 26:389 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • Fumiaki Shibata
    • 1
  • Yoshinori Takahashi
    • 2
  • Natsuki Hashitsume
    • 1
  1. 1.Department of Physics, Faculty of ScienceOchanomizu UniversityTokyoJapan
  2. 2.Department of Physics, Faculty of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations