Advertisement

Transport in Porous Media

, Volume 9, Issue 1–2, pp 155–164 | Cite as

Development of porous media theories — A brief historical review

  • R. De Boer
Technical Communication

Abstract

For a complete understanding of the complex theories in continuum mechanics, e.g., porous media theories, an extensive investigation of their historical development is helpful. Indeed, it was first with activities in this field that fundamental effects in saturated porous solids, e.g., uplift, friction, capillarity, and the effect of effective stresses, could be clarified.

The theory of porous media was pioneered by Reinhard Woltman in 1794 when he introduced the concept of volume fractions. Last century, important contributions were published by Adolf Fick, Henry Darcy, and Josef Stefan.

In the twentieth century, the scientific discussion on porous media theories was started by Paul Fillunger in 1913 in a paper about the uplift problem in saturated rigid porous solids. In subsequent papers, he investigated the effects of friction and capillarity and discovered the effect of effective stresses. In 1923 Karl von Terzaghi, founder of modern soil mechanics, started his investigations on saturated deformable porous solids within the framework of the calculation of the permeability coefficient of clay. For the derivation of his famous differential equation, he formulated a linear constitutive relation between the increments of the porosity and the effective stresses. In 1936, Paul Fillunger founded the concept of the modern theory of liquid-saturated porous solids. However, his findings are almost completely forgotten.

Today, two important directions of the porous media theory are commonly acknowledged. The first one is based on investigations by Maurice Biot, the second one proceeds from the mixture theory, extended by the concept of volume fractions.

Key words

Porous media theory mixture theory effective stresses Darcy von Terzaghi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedford, A. and Drumheller, D. S., 1983, Recent advances — theories of immiscible and structured mixtures,Int. J. Engng. Sci. 21, 863–960.Google Scholar
  2. Biot, M. A., 1935, Le problème de la consolidation des matières agileuses sous une charge,Ann. Soc. Sci. Bruxelles, Serie B 55, 110–113.Google Scholar
  3. Biot, M. A., 1941a, General theory of three-dimensional consolidation,J. Appl. Phys. 12, 155–164.Google Scholar
  4. Biot, M. A., 1941b, Consolidation settlement under a rectangular load distribution,J. Appl. Phys. 12, 426–430.Google Scholar
  5. Biot, M. A., 1955, Theory of elasticity and consolidation for a porous anisotropic solid,J. Appl. Phys. 26, 182–185.Google Scholar
  6. Biot, M. A., 1956a, Theory of deformation of a porous viscoelastic anisotropic solid,J. Appl. Phys. 27, 459–467.Google Scholar
  7. Biot, M. A., 1956b, General solutions of the equations of elasticity and consolidation for a porous material,J. Appl. Mech. 23, 91–96.Google Scholar
  8. Biot, M. A., 1956c, Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range,J. Acoust. Soc. Am. 28, 168–178.Google Scholar
  9. Biot, M. A. and Clingan, F. M., 1941, Consolidation settlement of a soil with an impervious top surface,J. Appl. Phys. 12, 578–581.Google Scholar
  10. Biot, M. A. and Clingan, F. M., 1942, Bending settlement of a slab resting on a consolidating foundation,J. Appl. Phys. 13, 35–40.Google Scholar
  11. Bowen, R. M., 1980, Incompressible porous media models by use of the theory of mixtures,Int. J. Engng. Sci. 18, 1129–1148.Google Scholar
  12. Bown, R. M., 1982, Compressible porous media models by use of the theory of mixtures,Int. J. Engng. Sci. 20, 697–735.Google Scholar
  13. Darcy, H., 1856,Les fontaines publiques de la ville de Dijon, Dalmont, Paris.Google Scholar
  14. Drumheller, D. S., 1978, The theoretical treatment of a porous solid using a mixture theory,Int. J. Solids Structures 14, 441–456.Google Scholar
  15. Fick, A., 1855, über Diffusion,Annalen der Physik und Chemie 94, 59–86.Google Scholar
  16. Fillunger, P., 1913, Der Auftrieb in Talsperren,österr. Wochenschrift für den öffentlichen Baudienst, pp. 532–556, 567–570.Google Scholar
  17. Fillunger, P., 1914, Neuere Grundlagen für die statische Berechnung von Talsperren,österr. Ing. und Arch.-Zeitschr. (OIAZ) 23, 441–447.Google Scholar
  18. Fillunger, P., 1915, Versuche über die Zugfestigkeit bei allseitigem Wasserdruck,österr. Wochenschrift für den öffentl. Baudienst, H. 29, pp. 443–448.Google Scholar
  19. Fillunger, P., 1929, Auftrieb und Unterdruck in Talsperren,Die Wasserwirtschaft 22, 334–336, 371–377, 388–390.Google Scholar
  20. Fillunger, P., 1930a, Zur Frage des Auftriebes in Talsperren,Die Wasserwirtschaft 23, 63–66.Google Scholar
  21. Fillunger, P., 1930b, Zur Frage des Auftriebes in Talsperren. Erwiderung,Die Wasserwirtschaft 23, 519.Google Scholar
  22. Fillunger, P., 1934, Der Kapillardruck in Talsperren,Die Wasserwirtschaft 27, H. 13/14.Google Scholar
  23. Fillunger, P., 1936,Erdbaumechanik?, Selbstverlag des Verfassers, Vienna.Google Scholar
  24. Heinrich, G., 1938, Wissenschaftliche Grundlagen der Theorie der Setzung von Tonschichten,Wasserkraft und Wasserwirtschaft 33, 5–10.Google Scholar
  25. Heinrich, G. and Desoyer, K., 1955, Hydromechanische Grundlagen für die Behandlung von stationÄren und instationÄren Grundwasserströmungen,Ing.-Archiv. 23, 73–84.Google Scholar
  26. Heinrich, G. and Desoyer, K., 1956, Hydromechaniche Grundlagen für die Behandlung von stationÄren und instationÄren Grundwasserströmungen, II. Mitteilung,Ing.-Archiv. 24, 81–84.Google Scholar
  27. Heinrich, G. and Desoyer, K., 1961, Theorie dreidimensionaler SetzungsvorgÄnge in Tonschichten,Ing.-Archiv. 30, 225–253.Google Scholar
  28. Hoffman, O., 1929, Zur Frage des Auftriebes in Talsperren,Die Wasserwirtchaft 22, 562–566.Google Scholar
  29. Kowalski, S. J., 1979, Comparison of the Biot equations of motion for a fluid-saturated porous solid with those of Derski,Bull. Acad. Pol. Sci., Ser. Techn., No 10–11, pp. 455–461.Google Scholar
  30. Raats, P. A. C., 1968, Forces acting upon the solid phase of a porous medium,ZAMP 19, 606–613.Google Scholar
  31. Stefan, J., 1871, über das Gleichgewicht und die Bewegung, insbesondere die Diffusion von Gasgemengen,Akad. Wiss., Math.-Naturwiss, Kl, Abt. II,63, 63–124.Google Scholar
  32. von Terzaghi, K., 1923, Die Berechnung der DurchlÄssigkeit des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen, Sitzungsber.Akad. Wiss., Math.-Naturwiss. Kl, Abt. IIa, 125–128.Google Scholar
  33. von Terzaghi, K., 1924, Die Theorie der hydrodynamischen Spannungserscheinungen und ihr erdbautechnisches Anwendungsgebiet,Proc. of the First International Congress for Applied Mechanics, pp. 288–294.Google Scholar
  34. von Terzaghi, K., 1925a,Erdbaumechanik auf bodenphysikalischer Grundlage, Franz Deuticke, Leipzig, Vienna.Google Scholar
  35. von Terzaghi, K., 1925b, Principles of soil mechanics,Engineering News-Record 95, 742–746, 796–800, 832–936, 974–978, 912–915, 987–990, 1026–1029, 1064–1068.Google Scholar
  36. von Terzaghi, K., 1933, Auftrieb und Kapillardruck an betonierten Talsperren,Die Wasserwirtschaft 26, 397–399.Google Scholar
  37. von Terzaghi, K., 1936, The shearing resistance of saturated soils and the angle between the planes of shear,First Int. Conf. Soil Mech., Vol. 1, Harvard University, pp. 54–56.Google Scholar
  38. von Terzaghi, K. and Fröhlich, O. K., 1936,Theorie der Setzung von Tonschichten, Franz Deuticke, Leipzig, Vienna.Google Scholar
  39. von Terzaghi, K. and Rendulic, L., 1934, Die wirksame FlÄchenporositat des Betons,Zeitschr. des Osten. Ing.-und Arch.-Vereines, pp. 1–9.Google Scholar
  40. Woltman, R., 1974,BeytrÄge zur hydraulischen Architectur, Dritter Band, Johann Christian Dietrich, Göttingen.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • R. De Boer
    • 1
  1. 1.Institut für MechanikUniversitÄt Essen, F. B. BauwesenEssen 1Germany

Personalised recommendations