Advertisement

Journal of Applied Electrochemistry

, Volume 19, Issue 1, pp 61–64 | Cite as

Effect of impurities on gallate reduction in alkaline solution — a linear stripping voltammetry study

  • A. Varadharaj
  • R. Srinivasan
  • G. Prabhakara Rao
Papers

Abstract

Industrial production of gallium is mainly carried out by the electrolytic method using Bayer liquors of the aluminium industry. The major impediment to the effective recovery of gallium is known to be the presence of impurities (metallic and organic). Investigations on the effect of organics (aliphatic and aromatic) employing linear stripping voltammetry techniques on glassy carbon electrodes in alkaline gallate solutions revealed the inhibitive effect of these compounds on the electrodeposition of gallium and, hence, on gallium recovery from aluminate liquors.

Keywords

Aluminate Physical Chemistry Gallate Gallium Industrial Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. C. Wilder and F. E. Katrak, in ‘Hydrometallurgy of Copper, its Byproducts and Rare Metals’ (edited by L. A. Haas and D. R. Weir), Proc. Dallysymp. (Feb. 1982), SME/AIME, New York (1983) p. 51.Google Scholar
  2. [2]
    T. I. Popova, I. A. Bagotskay and E. D. Moorhead, in ‘Encyclopedia of Electrochemistry of the Elements’ (edited by A. J. Bard), Marcel Dekker, New York (1978) Vol. 8, p. 207.Google Scholar
  3. [3]
    A. Leveque and J. Helgorsky, in ‘Proceedings of the International Solvent Extraction Conference, Vol. 2’, Toronto, Sept. 1977, CIM Toronto (1977) p. 439.Google Scholar
  4. [4]
    V. I. Bukin, P. V. Zhukovskii and A. M. Reznik,Tsvet. Met. (Eng.) 25 (1984) 60.Google Scholar
  5. [5]
    Taichi Sato and Hiroyuki OishiHydrometallurgy 16 (1986) 315.Google Scholar
  6. [6]
    J. La Breteque,J. Metals 8 (1956) 1528.Google Scholar
  7. [7]
    J. A. M. Abdul Kader, A. Varadharaj, G. N. Srinivasan and R. Srinivasan,Indian J. Tech. 13 (1975) 139.Google Scholar
  8. [8]
    K. Solymer, I. Somosi and E. Papp,Femip. Kut. Entez. Kozl. 5 (1961) 115.Google Scholar
  9. [9]
    A. T. Nizhnik and Z. V. Shekhter,J. Appl. Chem. (USSR) 35 (1962) 279.Google Scholar
  10. [10]
    V. I. Lysenko and P. P. Tsyb,J. Appl. Chem. (USSR) 38 (1965) 501.Google Scholar
  11. [11]
    But and De Keranenant, French Patent No. 2 021 126 (1968).Google Scholar
  12. [12]
    J. A. M. Abdul Kader, A. Varadharaj, G. N. Srinivasan and R. Srinivasan, in ‘Proceedings of the 12th Seminar on Electrochemistry’, Karaikudi, India (1972) p. 43.Google Scholar
  13. [13]
    J. A. M. Abdul Kader, A. Varadharaj, G. N. Srinivasan and R. Srinivasan,Indian J. Technol. 13 (1975) 139.Google Scholar
  14. [14]
    P. R. Radvilla,Chimia 37 (1983) 15.Google Scholar
  15. [15]
    A. Varadharaj and G. Prabhakara Rao,J. Appl. Electrochem. 16 (1986) 929.Google Scholar
  16. [16]
    R. S. Perkins,J. Electrochem. Soc. 119 (1972) 713.Google Scholar
  17. [17]
    R. S. Perkins,J. Electroanal. Chem. 101 (1979) 47.Google Scholar

Copyright information

© Chapman and Hall Ltd 1989

Authors and Affiliations

  • A. Varadharaj
    • 1
  • R. Srinivasan
    • 1
  • G. Prabhakara Rao
    • 1
  1. 1.Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations