Advertisement

Theoretical and Mathematical Physics

, Volume 48, Issue 1, pp 604–610 | Cite as

Peierls-Fröhlich problem and potentials with finite number of gaps. II

  • E. D. Belokolos
Article

Keywords

Finite Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. D. Belokolos, “Peierls-Fröhlich problem and potentials with finite number of gaps. I,” Teor. Mat. Fiz.,45, 268 (1980).Google Scholar
  2. 2.
    S. P. Novikov, “Periodic Korteweg-de Vries problem. I,” Funktsional. Analiz i Ego Prilozhen.,8, 54 (1974).Google Scholar
  3. 3.
    B. A. Dubrovin, “Periodic problem for the Korteweg-de Vries equation in the class of finite-gap potentials,” Funktsional. Analiz i Ego Prilozhen.,9, 41 (1975).Google Scholar
  4. 4.
    O. I. Bogoyavlenskii, “On integrals of higher stationary Korteweg-de Vries equations and the eigenvalues of Hill's equation,” Funktsional. Analiz i Ego Prilozhen.,10, 9.Google Scholar
  5. 5.
    H. Fröhlich, “On the theory of superconductivity. On-dimensional case,” Proc. R. Soc. Ser. A,223, 296 (1954).Google Scholar
  6. 6.
    A. R. Its and V. B. Matveev, “Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation,” Teor. Mat. Fiz.,23, 51 (1975).Google Scholar
  7. 7.
    P. A. Lee, T. M. Rice, and P. W. Anderson, “Conductivity from charge or spin waves,” Solid State Commun.,14, 703 (1974).Google Scholar
  8. 8.
    P. D. Lax, “Periodic solutions of the KdV equations,” Commun. Pure Appl. Math.,28, 141 (1975).Google Scholar
  9. 9.
    O. I. Bogoyavlenskii and S. P. Novikov, “On the connection between the Hamiltonian formalisms of stationary and nonstationary problems,” Funktsional. Analiz i Ego Prilozhen.,10, 9 (1976).Google Scholar
  10. 10.
    A. R. Its and V. B. Matveev, “On a class of solutions of the Korteweg-de Vries equation,” in: Problems of Mathematical Physics, No. 8 [in Russian], Leningrad State University (1976), pp. 70–92.Google Scholar
  11. 11.
    E. D. Belokolos, “Self-consistent considerations of the Peierls phase transition,” Abstracts Intern. Conf. Quasi One-Dimensional Conductors, September 4–8, 1978, Dubrovnik, SFR Yugoslavia, p. 47.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • E. D. Belokolos

There are no affiliations available

Personalised recommendations