Advertisement

Theoretical and Mathematical Physics

, Volume 33, Issue 2, pp 1000–1015 | Cite as

Dimer and Ising models on the Lobachevskii plane

  • F. Lund
  • M. Rasetti
  • T. Regge
Article

Keywords

Ising Model Lobachevskii Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. W. Kasteleyn, J. Math. Phys.,4, 287 (1963).Google Scholar
  2. 2.
    A. Cayley, Crelle's J.38, 93 (1847); J. Halton, J. Combinatorial Theory,1, 224 (1966).Google Scholar
  3. 3.
    C. H. C. Little. Can. J. Math.,25, 758 (1973).Google Scholar
  4. 4.
    J. S. Schur, J. Reine Angew, Math.,132, 85 (1907).Google Scholar
  5. 5.
    H. D. Kloostermann, Ann. Math.,47, 317 (1946).Google Scholar
  6. 6.
    C. L. Siegel, Topics in Complex Function Theory, Wiley, New York (1971).Google Scholar
  7. 7.
    M. Dehn. Math. Ann.,71, 116 (1911).Google Scholar
  8. 8.
    W. Magnus, A. Karras, and D. Solitar, Combinatorial Group Theory, Wiley, New York (1966).Google Scholar
  9. 9.
    A. Weil, Ann. Math.,72, 369 (1960);75, 578 (1962).Google Scholar
  10. 10.
    A. Borel, Proc. Intern. Congress Mathematicians, Stockholm (1962), p. 10; A. Borel, Colloq. Théorie des Groupes Algébriques, Bruxelles (1962), p. 23; A. Borel and Harish-Chandra, Ann. Math.,75, 485 (1962).Google Scholar
  11. 11.
    W. Magnus, Non-Euclidean Tesselations and their Groups, Academic Press, New York (1974).Google Scholar
  12. 12.
    F. Lund. Thesis. Princeton University (1975), unpublished. F. Lund, M. Rasetti, and T. Regge, Commun. Math. Phys.51, 15 (1976).Google Scholar
  13. 13.
    G. Polya, Acta Math.,68, 145 (1937).Google Scholar
  14. 14.
    H. S. H. Coxeter and W. O. Moser, Generators and Relations for Discrete Groups, Springer Verlag, Berlin (1965).Google Scholar
  15. 15.
    H. Frasch, Math. Ann.,108, 229 (1933).Google Scholar
  16. 16.
    M. E. Fisher, J. Math. Phys.,7, 1776 (1966); E. Montroll, in: Statistical Physics, Phase Transitions and Superfluidity (Eds. M. Chretien, E. P. Gross, and S. Deser), Gordon and Breach, New York (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • F. Lund
  • M. Rasetti
  • T. Regge

There are no affiliations available

Personalised recommendations