Advertisement

Theoretical and Mathematical Physics

, Volume 90, Issue 3, pp 242–251 | Cite as

Fractional integral and its physical interpretation

  • R. R. Nigmatullin
Article

Abstract

A relationship is established between Cantor's fractal set (Cantor's bars) and a fractional integral. The fractal dimension of the Cantor set is equal to the fractional exponent of the integral. It follows from analysis of the results that equations in fractional derivatives describe the evolution of physical systems with loss, the fractional exponent of the derivative being a measure of the fraction of the states of the system that are preserved during evolution timet. Such systems can be classified as systems with “residual” memory, and they occupy an intermediate position between systems with complete memory, on the one hand, and Markov systems, on the other. The use of such equations to describe transport and relaxation processes is discussed. Some generalizations that extent the domain of applicability of the fractional derivative concept are obtained.

Keywords

Fractal Dimension Relaxation Process Physical System Fractional Derivative Physical Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Mandelbrot,Fractal Geometry of Nature, Freeman, San-Francisco (1983).Google Scholar
  2. 2.
    Fractals in Physics. Proceedings of Sixth International Symposium on Fractals in Physics [Russian translation], Mir, Moscow (1988).Google Scholar
  3. 3.
    T. Pajkossy and L. Nyikos,Electrokhim. Acta,34, 171 (1989).Google Scholar
  4. 4.
    T. Kaplan, L. J. Gray, and S. H. Lin,Phys. Rev. B,35, 5379 (1987).Google Scholar
  5. 5.
    B. Sapoval,Silid State Ionics,23, 253 (1987).Google Scholar
  6. 6.
    A. Le Mehaute, A. Gnibert, M. Delaye, and C. Filippi,C. R. Acad. Sci. Ser. II,294, 835 (1982).Google Scholar
  7. 7.
    A. Le Mehaute and G. Crepy,Solid State Ionics,9/10, 359 (1983).Google Scholar
  8. 8.
    A. Le Mehaute and A. Dugast,J. Power Sources,9, 359 (1983).Google Scholar
  9. 9.
    R. R. Nigmatullin,Phys. Status Solidi B,123, 739 (1984).Google Scholar
  10. 10.
    R. R. Nigmatullin,Phys. Status Solidi B,124, 389 (1984).Google Scholar
  11. 11.
    K. Oldham and J. Spanier,Fractional Calculus, Academic Press, New York (1973).Google Scholar
  12. 12.
    S. G. Samko, A. A. Kilbas, and O. I. Marichev,Integrals and Derivatives of Fractional Order and Some Applications of Them [in Russian], Nauka i Tekhnika, Minsk (1987).Google Scholar
  13. 13.
    Yu. I. Babenko,Heat and Mass Transfer. A Method of Calculating and Diffusion Fluxes [in Russian]., Khimiya, Leningrad (1986).Google Scholar
  14. 14.
    R. Sh. Nigmatullin and B. A. Belavin,Tr. KAI,82, 58 (1964).Google Scholar
  15. 15.
    R. R. Nigmatullin,Phys. Status Solidi B,133, 425 (1986).Google Scholar
  16. 16.
    L. A. Dissado, R. R. Nigmatullin, and R. M. Hill, in:Dynamical Processes in Condensed Matter (ed. M. Evans),63, 253 (1985).Google Scholar
  17. 17.
    R. R. Nigmatullin,Fiz Tverd. Tela (Leningrad),27, 1583 (1985).Google Scholar
  18. 18.
    A. K. Jonscher,Dielectric Relaxation in Solids, Chelsea Dielectric Press, London (1983).Google Scholar
  19. 19.
    W. F. Brown (Jr.),Dielectrics, in:Handbuch der Physik, Vol. 17, Springer Verlag, Berlin (1956).Google Scholar
  20. 20.
    D. N. Zubarev,Nonequilibrium Statistical Thermodynamics Plenum, New York (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • R. R. Nigmatullin

There are no affiliations available

Personalised recommendations