Theoretical and Mathematical Physics

, Volume 34, Issue 1, pp 9–14 | Cite as

Classical equations of Euclidean field theory

  • I. V. Volovich


Field Theory Classical Equation Euclidean Field Euclidean Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. Simon, The P(φ)2 Euclidean, Quantum, Field Theory, Princeton, New Jersey (1974).Google Scholar
  2. 2.
    J. Iliopoulos, C. Itzykson, and A. Martin, Rev. Mod. Phys.,47, 165 (1975).Google Scholar
  3. 3.
    A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions [in Russian], Nauka (1975).Google Scholar
  4. 4.
    K. Jorgens, Math. Z.,77, 295 (1961).Google Scholar
  5. 5.
    I. Segal, Ann. Math.,78, 339 (1963).Google Scholar
  6. 6.
    C. S. Morawetz and W. A. Strauss, Commun. Pure Appl. Math.,26, 47 (1973).Google Scholar
  7. 7.
    J. M. Chadam, J. Funct. Anal.,2, 173 (1973).Google Scholar
  8. 8.
    J. Derrik, J. Math. Phys.,5, 1252 (1964).Google Scholar
  9. 9.
    L. D. Faddeev, in: Nonlocal, Nonlinear, and Nonrenormalizable Field Theories [in Russian], JINR, Dubna (1976).Google Scholar
  10. 10.
    T. Kato, Commun. Pure Appl. Math.,12, 403 (1959).Google Scholar
  11. 11.
    V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka (1976).Google Scholar
  12. 12.
    O. A. Ladyzhenskaya and N. N. Chral'tseva, Linear and Quasilinear Equations of Elliptic Type [in Russian], Nauka (1973).Google Scholar
  13. 13.
    S. M. Nikol'skii, Approximation of Functions of Many Variables and Embedding Theorems [in Russian], Nauka (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • I. V. Volovich

There are no affiliations available

Personalised recommendations