Advertisement

Theoretical and Mathematical Physics

, Volume 65, Issue 3, pp 1240–1249 | Cite as

Generator algebra of the asymptotic Poincaré group in the general theory of relativity

  • V. O. Solov'ev
Article

Keywords

General Theory Generator Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. A. M. Dirac, Proc. R. Soc. London Ser. A,246, 333 (1958); Phys. Rev.,114, 924 (1959).Google Scholar
  2. 2.
    R. Arnowitt, S. Deser, and C. W. Misner, Phys. Rev.,117, 1595 (1960);118, 1100 (1960);120, 313 (1960);121, 1556 (1961);122, 997 (1961); J. Math. Phys.,1, 434 (1960).Google Scholar
  3. 3.
    T. Regge and C. Teitelboim, Ann. Phys. (N. Y.),88, 286 (1974).Google Scholar
  4. 4.
    A. E. Pukhov, Vestn. Mosk. Univ. Fiz. Astron.,24, 41 (1983).Google Scholar
  5. 5.
    V. I. Denisov and A. A. Logunov. Reviews of Science and Technology. Modern Problems of Mathematics, Vol. 21 [in Russian], VINITI, Moscow (1982).Google Scholar
  6. 6.
    V. I. Denisov and V. O. Solov'ev, Teor. Mat. Fiz.,56, 301 (1983).Google Scholar
  7. 7.
    L. D. Faddeev. Usp. Fiz. Nauk.136, 435 (1982).Google Scholar
  8. 8.
    R. Schoen and S.-T. Yau. Commun. Math. Phys.,65, 45 (1979);79, 47 (1981);79, 231 (1981); Phys. Rev. Lett.,43, 1457 (1979).Google Scholar
  9. 9.
    E. Witten, Commun. Math. Phys.,80, 381 (1981).Google Scholar
  10. 10.
    V. O. Solov'ev, “Minkowski space and the asymptotic Poincaré group in the general theory of relativity,” Preprint OTF 83-193 [in Russian], Institute of High Energy Physics, Serpukhov (1983).Google Scholar
  11. 11.
    P. G. Bergmann and A. Komar. Int. J. Theor. Phys.,5, 15 (1972).Google Scholar
  12. 12.
    C. Teitelboim, Ann. Phys. (N.Y.),79, 542 (1973).Google Scholar
  13. 13.
    F. Gürsey, “Introduction to group theory,” in: Group Theory and Elementary Particles (Collection of Russian Translations edited by D. Ivanenko), Mir, Moscow (1967), pp. 25–113.Google Scholar
  14. 14.
    D. Christodoulou and N. O. Murchadha, Commun. Math. Phys.,80, 271 (1981).Google Scholar
  15. 15.
    J. A. Schouten and D. J. Struik, Einführung in die neurenen Methoden der Differentialgeometrie Noordhoff, Groningen (1938).Google Scholar
  16. 16.
    P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science Monographs Series No. 2, Yeshiva University. New York (1964).Google Scholar
  17. 17.
    V. O. Solov'ev, “Noether's theorems in the canonical formalism of the general theory of relativity. II. Global approach,” Preprint OTF 82-18 [in Russian], Institute of High Energy Physics, Serpukhov (1982).Google Scholar
  18. 18.
    O. Reula, J. Math. Phys.,23, 810 (1982).Google Scholar
  19. 19.
    M. Henneaux and C. Teitelboim, Phys. Lett. B,142, 355 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • V. O. Solov'ev

There are no affiliations available

Personalised recommendations