Theoretical and Mathematical Physics

, Volume 101, Issue 3, pp 1413–1418 | Cite as

The central two-point connection problem of Heun's class of differential equations

Article

Abstract

Boundary-value problems of ordinary, linear, homogeneous second-order differential equations belong to the most important and thus well-investigated problems in mathematical physics. This statement is true only as long asirregular singularities of the differential equation at hand are not involved. If singular points of irregular type enter the problem one will hardly find a systematic investigation of such a topic from a practical point of view. This paper is devoted to an outline of an approach to boundary-value problems of the class of Heun's differential equation when irregular singularities may be located at the endpoints of the relevant interval. We present an approach to the central two-point connection problem for all of these equations in a quite uniform manner. The essential point is an investigation of the Birkhoff sets of irregular difference equations, which, on the one hand, gives a detailed insight into the structure of the singularities of the underlying differential equation and, on the other hand, yields the basis of quite convenient algorithms for numerical investigations of the boundary values.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Bieberbach,Theorie gewöhnlicher Differentialgleichungen (second edition), Springer, Berlin (1965).Google Scholar
  2. 2.
    J. C. P. Miller,Proc. Cambridge Philos. Soc.,48, 428 (1952).Google Scholar
  3. 3.
    E. L. Ince,Ordinary Differential Equations, Dover Publications, New York (1956).Google Scholar
  4. 4.
    Heun Equation, ed. A. Ronveaux, Oxford University Press, Oxford (in press).Google Scholar
  5. 5.
    J. Meixner and F. W. Schäfke,Mathieu Funktionen und Sphäroidfunktionen, Springer, Berlin (1953).Google Scholar
  6. 6.
    I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov,Spheroidal and Coulomb Spheroidal Functions [in Russian], Nauka, Moscow (1976) (English translation is in preparation by Oxford University Press).Google Scholar
  7. 7.
    R. Mennicken,Arch. Math.,16, 452 (1965).Google Scholar
  8. 8.
    D. Schmidt,Thesis, Köln (1970).Google Scholar
  9. 9.
    D. Schmidt,Arch. Rat. Mech. Anal.,31(4), 322 (1968).Google Scholar
  10. 10.
    R. Schäfke,SIAM J. Math. Anal.,15(2), 253 (1984).Google Scholar
  11. 11.
    Centennial Workshop on Heun's Equation — Theory and Applications, Sept. 3–8, 1989 Schloss Ringberg (Rottach-Egern), ed. A. Seeger and W. Lay, Max-Planck-Institut für Metallforschung Institut für Physik, Stuttgart (1990).Google Scholar
  12. 12.
    S. Chandrasekhar,The Mathematical Theory of Black Holes, Oxford University Press, Oxford (1983).Google Scholar
  13. 13.
    A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York (1955).Google Scholar
  14. 14.
    G. Jaffé,Z. Phys. B,87, 535 (1933).Google Scholar
  15. 15.
    O. Perron,J. Reine und Angew. Math.,137(1), 6 (1909).Google Scholar
  16. 16.
    O. Perron,Acta Math.,34, 109 (1910).Google Scholar
  17. 17.
    J. Wimp,Computations with Recurrence Relations, Pitman Advanced Publishing Program, Boston, (1984).Google Scholar
  18. 18.
    C. R. Adams,Trans. Am. Math. Soc.,30, 507 (1928).Google Scholar
  19. 19.
    G. D. Birkhoff,Acta Math.,54, 205 (1930).Google Scholar
  20. 20.
    N. H. Abel,J. Reine und Angew. Math.,1, 311 (1826); cited in K. Knopp:Theorie und Anwendungen der unendlichen Reihen (fifth edition), Springer, Berlin (1964), p. 179.Google Scholar
  21. 21.
    K. Weierstrass,J. Reine und Angew. Math.,51, 29 (1856);Werke I, p. 185; cited in [23].Google Scholar
  22. 22.
    O. Stolz,Z. Math. Phys.,20, 369 (1875); cited in [23].Google Scholar
  23. 23.
    K. Knopp,Theorie und Anwendungen der unendlichen Reihen (fifth edition), Springer, Berlin (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • W. Lay

There are no affiliations available

Personalised recommendations